
Supplementary Material: Deep Comprehensive Correlation Mining
for Image Clustering

Jianlong Wu123∗ Keyu Long2∗ Fei Wang2 Chen Qian2 Cheng Li2 Zhouchen Lin3(�) Hongbin Zha3
1School of Computer Science and Technology, Shandong University

2SenseTime Research
3Key Laboratory of Machine Perception (MOE), School of EECS, Peking University

jlwu1992@sdu.edu.cn, corylky114@gmail.com, {wangfei, qianchen, chengli}@sensetime.com, zlin@pku.edu.cn, zha@cis.pku.edu.cn

Abstract

This is the supplementary material for the paper entitled
”Deep Comprehensive Correlation Mining For Image Clus-
tering”. The organization of the supplementary material is
listed as follows. We first present the proof of Lemma 1 and
Claim 1 in Section 1. Then we give the detailed definition
of evaluation metrics used in experiments in Section 2. Sec-
tion 3 presents the details of these compared methods. Sec-
tion 4 shows the architectures for different datasets. Finally,
in Section 5, we demonstrate the influence of sampling strat-
egy for triplet mutual information computing.1

1. Proof of Lemma 1 and Claim 1

Proof of Lemma 1: Since ω(ei) 6= ω(ej) for ∀i 6=
j, there exists a strongly increasing sequence of weights
{ω1, ω2, · · · , ωN(N+1)

2
}, and we can remove edges from G

in the order from smallest weight to largest by increasing
threshold t. This action would either increase the current
partition number n to n+ 1 or remain it unchanged. At the
beginning of the process we have 1 partition and at the end
of the process we have N partitions. Since 1 ≤ K ≤ N ,
there exists a K partition in the process.

Proof of Claim 1: Select samples x1,x2, · · · ,xK
from partition P 1, P 2, · · · , PK , denote the cosine sim-
ilarity matrix of their corresponding optimal features
fθ∗(x1), fθ∗(x2), · · · , fθ∗(xK) as S, and S equals to its K
partitions pseudo graph W, which is an identity matrix. De-
note fθ∗(xi) as [z1i , z

2
i , · · · , zKi], where zki denotes the k-th

element of the vector zi.
The set {z11 , z21 , · · · , zK1 , · · · , z1K , · · · , zKK} can only

have no more than K positive elements, otherwise, accord-
∗Equal contribution and the work was done during interns at SenseTime Research
1Project address: https://github.com/Cory-M/DCCM

ing to Pigeonhole principle, there exists a k that zki = zkj
and cos(zi, zj) > 0, which is contradicted to Sij = 0.

On the other hand, for the output of a softmax layer, ev-
ery vector has at least one positive entry. Therefore, every
vector has and only has one positive element that equals to
1.

2. Defenitions of Metrics
We introduce the following three standarded metrics we

used to evaluate our model:

• Normalized Mutual Information (NMI): Let C and C ′

denote the predicted partition and the ground truth par-
tition respectively, the NMI metric is calculated as:

NMI(C,C′) =

∑K
i=1

∑S
j=1 |Ci ∩ C′j | log

N|Ci∩C′
j |

|Ci||C′
j |√

(
∑K

i=1 |Ci| log Ci
N
)(
∑S

j=1 |C′j | log
C′

j

N
)

.

(1)

• Adjusted Rand Index (ARI): Given a set S of n ele-
ments, and two groupings or partitions (e.g. clustering
results) of these elements with r and s groups, namely
X = {X1, X2, . . . , Xr} and Y = {Y1, Y2, . . . , Ys},
the overlap between X and Y can be summarized in
a contingency table [cij], where each element cij de-
notes the number of objects in common between Xi

and Yj :
cij = |Xi ∩ Yj |. (2)

The contingent table is of the following shape:

X�
Y Y1 Y2 . . . Ys Sums

X1 c11 c12 . . . c1s a1
X2 c21 c22 . . . c2s a2

...
...

...
. . .

...
...

Xr cr1 cr2 . . . crs ar
Sums b1 b2 . . . bs

1

https://github.com/Cory-M/DCCM

Table 1. Network architecture for various datasets we used in experiments.
CIFAR-10 / CIFAR-100

32×32×3
Tiny-ImageNet

64×64×3
ImageNet-10/ImageNet-dog-15/STL-10

96×96×3

3×3 conv. 64 BN ReLU
(S) 3×3 conv. 64 BN ReLU
2×2 MaxPooling with stride 2

3×3 conv. 128 BN ReLU
2×2 MaxPooling with stride 2

3×3 conv. 256 BN ReLU
4×4 AvgPooling with stride 2

5×5 conv. 64 BN ReLU
5×5 conv. 64 BN ReLU

4×4 MaxPooling with stride 4
(S) 3×3 conv. 128 BN ReLU

3×3 conv. 128 BN ReLU
4×4 MaxPooling with stride 4

1×1 conv. 256 BN ReLU
2×2 AvgPooling with stride 2

5×5 conv. 64 BN ReLU
5×5 conv. 64 BN ReLU

4×4 MaxPooling with stride 4
(S) 3×3 conv. 128 with BN ReLU

3×3 conv. 128 BN ReLU
4×4 MaxPooling with stride 4
1×1 conv. 256 with BN ReLU
4×4 AvgPooling with stride 4

(D) Linear(256, 64) BN ReLU
Linear(64, c)

SoftMax

(D) Linear(256, 256) BN ReLU
Linear(256, c)

SoftMax

(D) Linear(256, 64) BN ReLU
Linear(64, c)

SoftMax

and ARI is defined by:

ARI =

∑
ij

(
nij

2

)
− [
∑
i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

)
1
2 [
∑
i

(
ai
2

)
+
∑
j

(
bj
2

)
]− [

∑
i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

) .
(3)

• Accuracy (ACC): Suppose the clustering algorithm is
tested on N samples. For a sample xi, we denote its
cluster label as ri and its ground truth as ti. The clus-
tering accuracy is defined by:

ACC(R, T) =

∑N
i=1 δ(ti,map(ri))

N
, (4)

where

δ(a, b) =

{
1, if a = b,

0, otherwise,
(5)

and function map(x) denotes the best permutation
mapping function gained by Hungarian algorithm [3].

3. Compared Methods
For clustering, we adopt both traditional meth-

ods and deep learning based methods, including K-
means, spectral clustering (SC) [22], agglomerative
clustering (AC) [11], the nonnegative matrix factoriza-
tion (NMF) based clustering [4], auto-encoder (AE) [1],
denoising auto-encoder (DAE) [18], GAN [17], de-
convolutional networks (DECNN) [21], variational
auto-encoding (VAE) [14], deep embedding cluster-
ing (DEC) [19], jointly unsupervised learning (JULE) [20],
and deep adaptive image clustering (DAC) [6].

For classification task, we compare DCCM against
several unsupervised feature learning methods, includ-
ing variational auto-encoder (VAE) [14], adversarial auto-
encoder (AAE) [16], BiGAN [9], noise as targets (NAT) [2],
and deep infomax (DIM) [12].

4. Architechtures Details
In Table 1, we present the architectures for different

datasets.
For CIFAR-10/CIFAR-100 [15], we set 4 conv layers

and 3 pooling layers, followed with 2 fully-connected lay-
ers. Batch Normalization [13] and ReLU are used on all
hidden layers. The output features after the second conv
layer (S for shallow) and the first fc layer (D for deep) are
used to compute the mutual information (MI) loss, concate-
nated as the input of discriminator. For other datasets, such
as Tiny-ImageNet [8] and STL-10 [7], we set 5 conv lay-
ers instead of 4. Due to their larger input size, we use the
feature maps after the third conv layer as S. For all experi-
ments, the output was a class num dimensional vector.

5. Comparison Under the Same Architecture
In Table 2, we present the additional comparisons using

the same network. On CIFAR-10/100, DeepCluster does
not work well based on its released official PyTorch code.
DAC has similar performance with that in their paper. Our
DCCM achieves the best results.

Please note that we only use a simple shallow version of
AlexNet in the paper, and our results are much better than
the best reported results of other methods.

Besides, our algorithm is relatively efficient. On CIFAR-
100, it costs 19 hours for training on a single GTX 1080Ti
GPU. Multiple GPU cards and better GPU can improve this.

6. Sampling Strategy
The experiment result corresponding to the analysis in

line 836-843 is listed in Table 3. We tried four strategies
to fetch positive and negative pairs from pseudo-graph W,
and the terms used in the table refer to:

• nearest means that for each sample, we select its near-
est sample from the minibatch to construct a positive

2

Table 2. Result comparison under the same architecture (except the last layer of RotNet) on CIFAR-10/100. ’<’ denotes ’less than’.
CIFAR-10 CIFAR-100

NMI
Clustering

ACC
ARI

Classify
ACC

NMI
Clustering

ACC
ARI

Classify
ACC

RotNet [10] 0.316 0.389 0.139 0.755 0.208 0.225 0.070 0.453
DeepCluster [5] <0.3 <0.3 <0.1 <0.75 <0.2 <0.2 <0.07 <0.45

DAC [6] 0.439 0.514 0.335 0.787 0.228 0.254 0.121 0.485
DCCM (ours) 0.496 0.623 0.408 0.818 0.285 0.327 0.173 0.512

Table 3. Classification accuracy of different pair-sampling strate-
gies on CIFAR-10.

Methods Classification ACC(Y64)

V1 nearest pos + random* neg 0.744

V2 nearest pos + farthest neg 0.713

V3 random* pos + random* neg 0.731

V4 top-n pos + random* neg 0.698

pair, while farthest means taking the farthest one to
construct a negative pair.

• random* means that we randomly take a positive sam-
ple that satisfies Wij = 1 as a positive pair or a nega-
tive sample that satisfies Wij = 0 as a negative pair.

• top-n pos means that we select the top n confident
pairs from the graph W to construct positive pairs.

For each strategy, we take n positive pairs and n negative
pairs into account, where n is our batch size. This is to
make sure that the computational complexity of each ap-
proach is nearly the same for fair comparison, while we also
have explored more costly approaches and find that the im-
provement is negligible.

To clearly illustrate how LMI is effected, here we set a
fixed model trained with only L̂PG + L̂PL. Then with the
pseudo-graph W generated by it, we train a new model us-
ing only LMI from scratch. It can be concluded that the pos-
itive pairs are sensitive to noise since strategy V1 achieves
better results than V3, and harder negative pairs are benefi-
cial for training as strategy V1 also achieves better results
than V2. Besides, we also notice the importance of uniform
sampling within the minibatch, as the top-n pairs in V4 has
higher confidence than that in V1, but the training collapses
since only part of samples in the batch are included in the
top-n strategy.

References
[1] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo

Larochelle. Greedy layer-wise training of deep networks. In
NIPS, pages 153–160, 2007.

[2] Piotr Bojanowski and Armand Joulin. Unsupervised learning
by predicting noise. In ICML, pages 517–526, 2017.

[3] Deng Cai, Xiaofei He, and Jiawei Han. Document clustering
using locality preserving indexing. IEEE Transactions on
Knowledge and Data Engineering, 17(12):1624–1637, 2005.

[4] Deng Cai, Xiaofei He, Xuanhui Wang, Hujun Bao, and Ji-
awei Han. Locality preserving nonnegative matrix factoriza-
tion. In IJCAI, 2009.

[5] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and
Matthijs Douze. Deep clustering for unsupervised learning
of visual features. In ECCV, 2018.

[6] Jianlong Chang, Lingfeng Wang, Gaofeng Meng, Shiming
Xiang, and Chunhong Pan. Deep adaptive image clustering.
In IEEE ICCV, pages 5879–5887, 2017.

[7] Adam Coates, Andrew Ng, and Honglak Lee. An analysis
of single-layer networks in unsupervised feature learning. In
AISTATS, pages 215–223, 2011.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In IEEE CVPR, 2009.

[9] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Ad-
versarial feature learning. In ICLR, 2017.

[10] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-
supervised representation learning by predicting image rota-
tions. In ICLR, 2018.

[11] K Chidananda Gowda and G Krishna. Agglomerative clus-
tering using the concept of mutual nearest neighbourhood.
Pattern recognition, 10(2):105–112, 1978.

[12] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon,
Karan Grewal, Adam Trischler, and Yoshua Bengio. Learn-
ing deep representations by mutual information estimation
and maximization. In ICLR, 2019.

[13] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. arXiv preprint arXiv:1502.03167, 2015.

[14] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013.

[15] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-
10 and cifar-100 datasets. URl: https://www. cs. toronto.
edu/kriz/cifar. html, 6, 2009.

[16] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian
Goodfellow, and Brendan Frey. Adversarial autoencoders.
arXiv preprint arXiv:1511.05644, 2015.

[17] Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised representation learning with deep convolu-

3

tional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[18] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua
Bengio, and Pierre-Antoine Manzagol. Stacked denoising
autoencoders: Learning useful representations in a deep net-
work with a local denoising criterion. Journal of machine
learning research, 11(Dec):3371–3408, 2010.

[19] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised
deep embedding for clustering analysis. In ICML, pages
478–487, 2016.

[20] Jianwei Yang, Devi Parikh, and Dhruv Batra. Joint unsuper-
vised learning of deep representations and image clusters. In
IEEE CVPR, pages 5147–5156, 2016.

[21] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and
Rob Fergus. Deconvolutional networks. In IEEE CVPR,
pages 2528–2535, 2010.

[22] Lihi Zelnik-Manor and Pietro Perona. Self-tuning spectral
clustering. In NIPS, pages 1601–1608, 2005.

4

