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In this supplement, we first show the proofs for Lemma 1 and Theorem 1 in the main paper. Then we present details for
models used in experiments and provide more experimental results.
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1. Technical Proofs
1.1. Proof of Lemma 1
Lemma 1. For any selected blocks A C B C V and blocks v € V \ B, it holds that

F(A) >0 ()
FAu{v})—F(4) >0 (2)
F(AU{v}) = F(A) =2 F(BU{v}) — F(B) 3)

where I reaches its convex hull point with respect to the cost.

Proof. Denote each cost-accuracy pair at global optimality as (c;, fi),7 = 1,..., LY and add three virtual points, (0,0),

(cpw,0), (epwv, f*), where cpv = maxscy ¢(S), f* = max{fi,..., fr~}. This points set can be seen as a convex hull,

where for each cost we assign its associated positive value (accuracy) on the convex hull. If F'(S) can always reach its convex
hull point with respect to ¢(S), denote f(¢(S)) = F(S), then f is concave with respect to cost ¢s. From the convex hull, we
know points, (0,0), (¢z~,0), (cz~, f*) must be included.

To show F(A) > 0,¥.A C V,assume A C V, F(A) < 0, then the convex hull contains (0, 0), (¢(A), f(c(A))), (cpx,0),
(con, f*), F(0) =0, f(c(A)) <0, f(crv) > 0. Then there are points in the triangle region by convex combination of three
points, (0,0), (c(A), f(c(A)), (cLn, f*), not in the convex hull. This is contradictory to the convex hull definition[1]: the
set of all convex combinations of points is in the convex hull. Therefore, F'(A) > 0,V.A C V holds.

To show F(AU {v}) — F(A) > 0, assume the contradiction: 34 C B C V,v € V\ B, F(AU {v}) < F(A). The
triangular region by the convex combination of three points, (c¢(A), f(c(A))), (c(A U {v}), f(c(AUW))), (cp~, f*), is not
in the convex hull, which is contradictory to convex hull definition. Therefore, F'(A U {v}) — F(.A) > 0 holds.

By concavity, we have Ya < b,s > 0, f(a +5) — f(s) > f(b+ s) — f(b). In order to show F(AU {v}) — F(A) >
F(BU{v})— F(B), we just need to show f(c(AU{v})) — f(c(A)) > f(c(BU{v}))— f(c(B)). By setting a = c(A), s =



f(e(AU {0})) = F(e(A) = F(e(A) + (v) = f(c(A)) )
FeBU{v}) = f(e(B)) = F(c(B) + c(v)) — f(e(B)), (5)
and with A C B, a < b, and ¢(v) > 0 shows ¢ > 0. Again with concavity, we have f(c(A) + c(v)) — f(c(A)) >

f(e(B) + ¢(v)) — f(c (B)) Therefore, F(AU {v}) — F(A) > F(BU {v}) — F(B) holds.
O

1.2. Proof of Theorem 1

Theorem 1. If F' is a nondecreasing set function satisfying diminishing return property and F (D) = 0, then the CEG
algorithm achieves a constant ratio 5 (1 — 7) of the optima:

max{F(Svc), F(Sarr), F(Samr)} (6)
1 1

S 2(1- =

-2 (1 6) MAdds(S)gB}fi?l):’(aram(S)ng F(S)

Proof. [2] state that the better solution of the unit-cost greedy and benefit-cost greedy algorithms solving the Budgeted MAX-
COVER problem is at least a constant factor %(1 - é) of the optimal solution, proved for the special case of the Budgeted
MAX-COVER problem. [3] prove this result for arbitrary nondecreasing submodular functions. By applying this result to
our architecture searching case, we have

~ ~ 1 1
> 2(1— =
maX{F(SUC)7 F(SAPR)} -2 (1 6) MAdds(S)gBI?fI}D(aram(S)ng F(S) @)
- ~ 1 1
F F > —(1- - F
max{F(Sve), F(Sanr)} 2 2( e) MAdds(S)gé?:,igamm(S)ng (8) ®)

Eq 7 states that the better solution of the unit cost greedy and accuracy parameter ratio greedy can achieve a constant factor
(1 - 7) of the optimal solution under the MAdds and parameter budget constraint. Similarly, Eq. 8 states that the better

solutlon of the unit cost greedy and accuracy MAdds ratio greedy can achieve a constant factor 5(1 — ;) of the optimal

solution under the MAdds and parameter budget constraint. Apply maximization to both side of Eq.7 and Eq.8, we have,

max{F(Svc), F(Sarr), F(Samr)} 9)
1 1
> —(1—-- F
- 2( e)MAdds(S)SJ;ELE,iI)){aram(S)ng (8)
O

2. Experimental Results
In this section, we describe our architecture solution paths and show our final network architectures in detail.

2.1. Searching and Adapting Details

As our main purpose is to look for low cost mobile neural networks and depth-wise based blocks have been shown to
have high computational efficiency, we derive basic blocks from MobileNetV2[5] blocks by using different expansion ratios
and group convolutions instead of searching block skeletons from scratch. Methods searching from scratch [4, 6] typically
find models that are memory intensive and computation intensive in practice. Mentioned in the main paper, We have L = 6
different basic blocks to pick from and N = 36 number of positions that can be filled for building networks under parameter
and MAdds constraints for our low cost architecture search. A special case of inserting all positions with basic block of type
5 on ImageNet can be seen in Table 1. For architecture search, we start from an initial small basic network (seen in Table
2), giving us the ability to evaluate accuracy on the validation set. From the small basic network, we are searching network
architectures under parameter and MAdds constraints by RCAS. The difference between architectures on ImageNet and
CIFAR-100 is the input image size, stride of conv0 and RC2, and the last fully connected layer’s output channels cy;nq;. By
changing the input image size to 32 x 32, the stride of conv0 and RC2 to 1, and the output channels of the last fully connected



layer to 100, we can construct the network architecture on CIFAR-100 given the network architecture on ImageNet. Similarly,
by changing the input image size to 224 x 224, the stride of conv0 and RC2 to 2, and the output channels of the last fully
connected layer to 1000, we can construct the network architecture on ImageNet adapted from network architecture on
CIFAR-100.

Name Input Operator Expansion (t) g:é)sgs(g)s Stride (s) g;o)f:t(l;); C(}?Z;aitls Repetition
conv( 224 x 224 x 3 conv2d - - 2 - 32 -
MBI1 112 x 112 x 32 MB 1 1 1 1 16 1
RC2 112 x 112 x 16 Type 5 6 1 2 1 24 1
RC2(1-5) 56 X 56 x 24 Type 5 6 1 1 1 24 5
RC3 56 x 56 x 24 Type 5 6 1 2 1 32 1
RC3(1-5) 28 x 28 x 32 Type 5 6 1 1 1 32 5
RC4 28 x 28 x 32 Type 5 6 1 2 1 64 1
RC4(1-5) 14 x 14 x 64 Type 5 6 1 1 1 64 5
RC5 14 x 14 x 64 Type 5 6 1 1 1 96 1
RC5(1-5) 14 x 14 x 96 Type 5 6 1 1 1 96 5
RC6 14 x 14 x 96 Type 5 6 1 2 1 160 1
RC6(1-5) 7 x 7 x 160 Type 5 6 1 1 1 160 5
RC7 7 x 7 x 160 Type 5 6 1 1 1 320 1
RC7(1-5) 7 X7 x 320 Type 5 6 1 1 1 320 5
conv8 7 x7x 320 conv2d 1x1 - - - 1 1280
pool9 7 x 7 x 1280 avgpool 7x7 - - - 1 1280 -
fcl0 1x1x 1280 FC - - - - 1000 -

Table 1: The architecture of a special case of filling all positions with basic block of type 5 on ImageNet. Each line gives a sequence of 1
or more identical (modulo stride) layers with repetition times. All layers in the same module or sequence have the same number of output
channels. When the dimension of the input to the block is not the same as the output, i.e., RC2, we simply skip the residual connection
as in MobileNetV2. MB block refers to the first MobileNetV2 block in MobileNetV2 with expansion ¢ = 1, expansion group g. = 1,
projection group g, = 1 and stride s = 1. During architecture search, we set convO, MB1, conv8, pool9 and fc10 as basic layers for
building convolutional neural networks and only search basic blocks from RC2-RC7(1-5), which will be picked to fill N = 36 positions
for building networks under parameter and MAdds constraints.

Name Input Operator Expansion () g:(gjgs(lg():) Stride (s) g;gﬁft(ﬁ:) Chaﬁgslztcom) Repetition (12;)
conv( 224 x 224 X 3 conv2d - - 2 - 32 -

MB1 112 x 112 x 32 MB 1 1 1 1 16 1

RC2 112 x 112 x 16 Type 5 6 1 2 1 24 1

RC3 | 56 x 56 x 24 Type 5 6 1 2 I 32 1

RC4 28 X 28 x 32 Type 5 6 1 2 1 64 1

RC6 14 x 14 x 96 Type 5 6 1 2 1 160 1

conv§ 7T X7 x96 conv2d 1x1 - - - 1 1280

pool9 7 x 7 %1280 avgpool 7x7 - - 1 1280 -

fcl0 | 1x 1 x 1280 FC 5 : 5 5 final :

Table 2: The architecture of an initial starting network on ImageNet by filling 4 positions with type 5 and adding basic layers, conv0,
MBI, conv8, pool9, fc10. Starting from this network, we aim to fill remaining 32 positions with 6 types of basic blocks under parameter
and MAdds constraints.



2.2. The RCNet Architecture
On CIFAR-100, the architecture search path by RCAS is

[5,0,0,0,0,0,5,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0, 0, 0]
[5,0,0,0,0,0,5,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,5,4,0,0,0,0,0,0,0,0,0, 0]
[5,0,0,0,0,0,5,0,0,0,0,0,5,0,0,0,0,6,0,0,0,0,0,0,5,4,0,0,0,0,0,0,0,0,0,0]
[5,0,0,0,0,0,5,0,0,0,0,5,5,0,0,0,0,6,0,0,0,0,0,0,5,4,0,0,0,0,0,0,0,0,0,0]
[5,0,0,0,0,0,5,0,0,0,0,5,5,0,0,0,0,6,0,0,6,0,0,0,5,4,0,0,0,0,0,0,0,0,0, 0]
[5,0,0,0,0,0,5,0,0,0,0,5,5,0,0,0,0,6,0,0,6,0,4,0,5,4,0,0,0,0,0,0,0,0,0, 0]
[5,0,0,0,0,0,5,2,0,0,0,5,5,0,0,0,0,6,0,0,6,0,4,0,5,4,0,0,0,0,0,0,0,0,0,0]
[5,3,0,0,0,0,5,2,0,0,0,5,5,0,0,0,0,6,0,0,6,0,4,0,5,4,0,0,0,0,0,0,0,0,0,0]
[5,3,0,0,0,0,5,2,0,3,0,5,5,0,0,0,0,6,0,0,6,0,4,0,5,4,0,0,0,0,0,0,0,0,0, 0]
[5,3,0,0,0,0,5,2,0,3,0,5,5,0,3,0,0,6,0,0,6,0,4,0,5,4,0,0,0,0,0,0,0,0,0, 0]
[5,3,0,0,0,0,5,2,0,3,0,5,5,0,3,0,0,6,0,0,6,0,4,0,5,4,0,0,0,0,0,0,0,0,0,0]
[5,3,0,0,0,0,5,2,0,3,0,5,5,0,3,0,0,6,0,0,6,0,4,6,5,4,0,0,0,0,0,0,0,0,0,0]
[5,3,0,0,0,0,5,2,0,3,0,5,5,0,3,0,0,6,0,0,6,0,4,6,5,4,0,0,4,0,0,0,0,0,0, 0]
[5,3,0,0,0,0,5,2,0,3,0,5,5,0,3,3,0,6,0,0,6,0,4,6,5,4,6,0,4,0,0,0,0,0,0, 0]
[5,3,0,0,0,0,5,2,0,3,3,5,5,0,3,3,0,6,0,0,6,0,4,6,5,4,6,0,4,0,0,0,0,0,0,0]
[5,3,0,0,0,0,5,2,0,3,3,5,5,0,3,3,0,6,0,0,6,0,4,6,5,4,6,0,4,1,0,0,0,0,0,0]
5,3,0,1,0,0,5,2,0,3,3,5,5,0,3,3,0,6,0,0,6,0,4,6,5,4,6,0,4,1,0,0,0,0,0,0]
5,3,0,1,1,0,5,2,0,3,3,5,5,0,3,3,0,6,0,0,6,0,4,6,5,4,6,0,4,1,0,0,0,0,0, 0]
5,3,0,1,1,0,5,2,0,3,3,5,5,0,3,3,0,6,0,1,6,0,4,6,5,4,6,0,4,1,0,0,0,0,0, 0]
5,3,0,1,1,1,5,2,0,3,3,5,5,0,3,3,0,6,0,1,6,0,4,6,5,4,6,0,4,1,0,0,0,0, 0,0
5,3,5,1,1,1,5,2,0,3,3,5,5,0,3,3,0,6,0,1,6,0,4,6,5,4,6,0,4, 1,0,0,0,0, 0,0
5,3,5,1,1,1,5,2,0,3,3,5,5,0,3,3,0,6,0,1,6,0,4,6,5,4,6,0,4,1,0,6,0,0,0, 0]
5,3,5,1,1,1,5,2,0,3,3,5,5,0,3,3,0,6,0,1,6,2,4,6,5,4,6,0,4,1,0,6,0,0,0, 0]
5,3,5,1,1,1,5,2,0,3,3,5,5,0,3,3,0,6,0,1,6,2,4,6,5,4,6,1,4,1,0,6,0,0,0,0]
5,3,5,1,1,1,5,2,0,3,3,5,5,0,3,3,0,6,3,1,6,2,4,6,5,4,6,1,4,1,0,6,0,0,0,0]

where the first line means the initial starting network architecture and the last line means the searched final network archi-
tecture under given parameter and MAdds constraints. Each line (current architecture) fills one more block based on the
searched previous architecture by RCAS. 1 — 6 in one line means the type of basic block is picked to fill N = 36 positions
for building network architecture and 0 means no block will be inserted to those positions, considered as identity operation.

Given parameter constraint 2.4// and MAdds constraint 91.1M (MobileNetV?2 parameters and MAdds on CIFAR-100),
our network architecture searched on CIFAR-100 is described in Table 3.



. Expansion . Projection Output Repetition (n;)

Name Input Operator Expansion (t) Group (ge) Stride (s) Group (gp) | Channels (Cou)

conv0 32x32x3 conv2d - - 1 - 32 -
MB1 32 x 32 x 32 MB 1 1 1 1 16 1
RC2 32 x 32 x 16 Type 5 6 1 1 1 24 1
RC2(1) | 32 x32x 24 Type 3 6 2 1 2 24 1
RC2(2) | 32 x32x 24 Type 1 3 1 1 1 24 1
RC2(3) | 32 x32x24 Type 1 3 1 1 1 24 1
RC3 32 x32x24 Type 5 6 1 2 1 32 1
RC3(1) | 16 x 16 x 32 Type 2 3 1 1 2 32 1
RC3(2) | 16 x 16 x 32 Type 3 6 2 1 2 32 1
RC3(3) | 16 x 16 x 32 Type 3 6 2 1 2 32 1
RC3(4) | 16 x 16 x 32 Type 5 6 1 1 1 32 1
RC4 16 x 16 x 32 Type 5 6 1 2 1 64 1
RC4(1) 8 X 8 x 64 Type 3 6 2 1 2 64 1
RC4(2) 8 X 8 X 64 Type 3 6 2 1 2 64 1
RC4(3) 8 X 8 x 64 Type 6 12 2 1 4 64 1
RC5 8 X 8 x 64 Type 1 3 1 1 1 96 1
RC5(1) 8 X 8 x 96 Type 6 12 2 1 4 96 1
RC5(2) 8 X 8 x 96 Type 4 6 1 1 2 96 1
RC5(3) 8 X 8 x 96 Type 6 12 2 1 4 96 1
RC6 8 X 8 X 96 Type 5 6 1 2 1 160 1
RC6(1) 4 x 4 x 160 Type 4 6 1 1 2 160 5
RC6(2) 4 x 4 x 160 Type 6 12 2 1 4 160 5
RC6(3) 4 x 4 x 160 Type 4 6 1 1 2 160 5
RC6(4) 4 x 4 x 160 Type 1 3 1 1 1 160 5
conv8 4 x 4 x 160 conv2d 1x1 - - - 1 1280 -
pool9 4 x4 x 1280 | avgpool 4x4 - 1 1280

fc10 1x1x1280 FC - - - - 100

Table 3: The searched network architecture on CIFAR-100 under MobileNetV2 parameter and MAdds constraints.

On ImageNet, the architecture search path by RCAS is,

[5,0,0,0,0,0,5,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0, 0]
[5,1,0,0,0,0,5,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0, 0]
[5,1,0,0,0,0,5,0,0,0,0,0,5,0,0,0,0,0,0,0,6,0,0,0,5,0,0,0,0,0,0,0,0,0,0, 0]
[5,1,0,0,0,0,5,0,0,0,1,0,5,0,0,0,0,0,0,0,6,0,0,0,5,0,0,0,0,0,0,0,0,0,0, 0]
[5,1,0,0,0,0,5,0,0,0,1,0,5,2,0,0,0,0,0,0,6,0,0,0,5,0,0,0,0,0,0,0,0,0,0, 0]
[5,1,0,0,0,0,5,0,0,0,1,0,5,2,0,0,0,0,0,0,6,0,4,0,5,0,0,0,0,0,0,0,0,0,0, 0]
[5,1,0,0,0,0,5,0,0,0,1,0,5,2,0,4,0,0,0,0,6,0,4,0,5,0,0,0,0,0,0,0,0,0,0, 0]
[5,1,0,0,0,0,5,0,0,0,1,0,5,2,0,4,0,0,0,0,6,0,4,0,5,0,0,0,6,0,0,0,0,0,0,0]
[5,1,0,0,0,0,5,0,0,0,1,0,5,2,0,4,0,0,0,0,6,0,4,6,5,0,0,0,6,0,0,0,0,0,0,0]
[5,1,0,0,0,0,5,0,0,0,1,0,5,2,0,4,0,0,0,0,6,0,4,6,5,3,0,0,6,0,0,0,0,0,0, 0]
[5,1,0,0,0,0,5,0,0,0,1,0,5,2,0,4,0,0,0,0,6,0,4,6,5,3,0,3,6,0,0,0,0,0,0,0]
[5,1,0,0,0,0,5,0,0,0,1,0,5,2,0,4,0,0,0,1,6,0,4,6,5,3,0,3,6,0,0,0,0,0,0,0]
[5,1,0,0,0,0,5,0,0,0,1,0,5,2,0,4,0,0,0,1,6,0,4,6,5,3,0,3,6,3,0,0,0,0,0, 0]
[5,1,0,0,0,0,5,0,0,0,1,0,5,2,0,4,0,0,0,1,6,0,4,6,5,3,0,3,6,3,0,0,0,0,6, 0]
[5,1,0,4,0,0,5,0,0,0,1,0,5,2,0,4,0,0,0,1,6,0,4,6,5,3,0,3,6,3,0,0,0,0,6, 0]
[5,1,0,4,0,0,5,0,0,0,1,0,5,2,0,4,0,0,0,1,6,0,4,6,5,3,0,3,6,3,0,0,0,0,6, 0]

Given parameter constraint 3.4)/ and MAdds constraint 300/ (MobileNetV2 parameters and MAdds on ImageNet), our
network architecture searched on ImageNet is described in Table 4. A graphic of the architecture search and final architecture
can be found on the supplement webpage.



Name Input Operator Expansion () g:gj;?;:) Stride (s) Cl:}‘;(())t?[(l;:) Cclzzrtli 1:15 Repetition
conv0 224 x 224 x 3 conv2d - - 2 - 32 -
MB1 112 x 112 x 32 MB 1 1 1 1 16 1
RC2 112 x 112 x 16 Type 5 6 1 2 1 24 1
RC2(1) 56 X 56 x 24 Type 1 3 2 1 2 24 1
RC2(2) 56 X 56 x 24 Type 4 6 1 1 2 24 1
RC3 56 X 56 x 24 Type 5 6 1 2 1 32 1
RC3(1) 28 x 28 x 32 Type 1 3 1 1 1 32 1
RC4 28 x 28 x 32 Type 5 6 1 2 1 64 1
RC4(1) 14 x 14 x 64 Type 2 3 1 1 2 64 1
RC4(2) 14 x 14 x 64 Type 4 6 1 1 2 64 1
RC5 14 x 14 x 64 Type 1 3 1 1 1 96 1
RC5(1) 14 x 14 x 96 Type 6 12 2 1 4 96 1
RC5(2) 14 x 14 x 96 Type 4 6 1 1 2 96 1
RC5(3) 14 x 14 x 96 Type 6 12 2 1 4 96 1
RC6 14 x 14 x 96 Type 5 6 1 2 1 160 1
RC6(1) 7% 7 x 160 Type 3 6 2 1 2 160 1
RC6(2) 7 x 7 x 160 Type 3 6 2 1 2 160 1
RC6(3) 7 X7 x 160 Type 6 12 2 1 4 160 1
RC6(4) 7 X7 x 160 Type 3 6 2 1 2 160 1
RC7 7 X7 x 160 Type 6 12 2 1 4 320 1
conv8 7 x 7 x 320 conv2d 1x1 - - - 1 1280 -
pool9 7 x 7 x 1280 avgpool 7x7 - - - 1 1280 -
fcl0 1x1x 1280 FC - - - - 1000 -

Table 4: The searched network architecture on ImageNet under MobileNetV2 parameter and MAdds constraints.

. Expansion . Projection Output Repetition (n;)
Name Input Operator Expansion (t) Group (ge) Stride (s) Group (gp) | Channels (Cou)
conv( 224 x 224 X 3 conv2d - - 2 - 32 -
MBI1 112 x 112 x 32 MB 1 1 1 1 16 1
RC2 112 x 112 x 16 Type 5 6 1 2 1 24 1
RC2(1) 56 X 56 x 24 Type 3 6 2 1 2 24 1
RC2(2) 56 X 56 x 24 Type 1 3 1 1 1 24 1
RC2(3) 56 X 56 x 24 Type 1 3 1 1 1 24 1
RC2(4) 56 X 56 x 24 Type 1 3 1 1 1 24 1
RC2(5) 56 X 56 x 24 Type 5 6 1 1 1 24 1
RC3 56 X 56 x 24 Type 5 6 1 2 1 32 1
RC3(1) 28 X 28 x 32 Type 2 3 1 1 2 32 1
RC3(2) 28 X 28 x 32 Type 3 6 2 1 2 32 1
RC3(3) 28 X 28 x 32 Type 3 6 2 1 2 32 1
RC3(4) 28 X 28 x 32 Type 5 6 1 1 1 32 1
RC4 28 X 28 x 32 Type 5 6 1 2 1 64 1
RC4(1) 14 x 14 x 64 Type 3 6 2 1 2 64 1
RC4(2) 14 x 14 x 64 Type 3 6 2 1 2 64 1
RC4(3) 14 x 14 x 64 Type 6 12 2 1 4 64 1
RC5 14 x 14 x 64 Type 1 3 1 1 1 96 1
RC5(1) 14 x 14 x 96 Type 6 12 2 1 4 96 1
RC5(2) 14 x 14 x 96 Type 4 6 1 1 2 96 5
RC5(3) 14 x 14 x 96 Type 6 12 2 1 4 96 5
RC6 14 x 14 x 96 Type 5 6 1 2 1 160 1
RC6(1) 7 x7x 160 Type 4 6 1 1 2 160 5
RC6(2) 7 x7x 160 Type 6 12 2 1 4 160 5
RC6(3) 7 X7 x 160 Type 4 6 1 1 2 160 5
RC6(4) 7 X7 x 160 Type 1 3 1 1 1 160 5
RC7 7 x7x 160 Type 6 12 2 1 4 320 1
conv8 7T x7x 320 conv2d 1x1 - - - 1 1280 -
pool9 7 X7 %1280 avgpool 7x7 - - - 1 1280 -
fc10 1x1x1280 FC - - - - 1000 -

Table 5: The searched network architecture on CIFAR-100 adapts to ImageNet.




2.3. Adapting to ImageNet

We showed the architecture detail of RCNet searched on CIFAR-100 and ImageNet in the above subsection. In this
subsection, we show the network architecture on ImageNet by adapting the searched RCNet on CIFAR-100. Table 5 lists
the adapted RCNet. This adapted model offers 72.1% top-1 accuracy with similar complexity, comparable to searching
directly on ImageNet. Without searching directly on ImageNet, the RCAS algorithm can find a comparable architecture
given parameter and MAdds constraints ~ 4 times faster. Even though RCNet searched on ImageNet and RCNet adapted
from CIFAR-100 show similar strong performance on ImageNet, the architectures are not very alike layer by layer. This may
indicate the existence of many locally optimal solutions for architecture search under parameter and MAdds constraints.
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