Subspace Structure-aware Spectral Clustering for Robust Subspace Clustering: Supplementary Material

1. Derivation of Eq. (10)

In this section, we consider the following problem:

$$\max_{\Sigma_1, \dots, \Sigma_K \in \mathcal{S}} \sum_{i}^{N} \log \sum_{k}^{K} G_{ik} \mathcal{N}(\boldsymbol{x}_i; 0, \Sigma_k), \tag{23}$$

where $S = \{\Sigma | \Sigma \in \mathcal{R}^{D \times D}, \Sigma = \Sigma^T \text{ and } \Sigma \succeq \sigma I \}$. In the following, we will derive that the maximizers of Eq. (23) $\hat{\Sigma}_1, ..., \hat{\Sigma}_K$ can be analytically solved as follows:

$$\hat{\Sigma}_k = U_k \text{Diag}(\max(\boldsymbol{d}_k, \sigma \mathbf{1}_D)) U_k^T, \tag{24}$$

where $\frac{1}{\sum_i G_{ik}} \sum_i G_{ik} \boldsymbol{x}_i \boldsymbol{x}_i^T = U_k \mathrm{Diag}(\boldsymbol{d}_k) U_k^T$. Since $G_{ij} \in \{0,1\}$ and $G\boldsymbol{1}_K = \boldsymbol{1}_N$, Eq. (23) can be represented as follows:

$$\max_{\Sigma_{1},...,\Sigma_{K} \in \mathcal{S}} \sum_{i}^{N} \log \sum_{k}^{K} G_{ik} \mathcal{N}(\boldsymbol{x}_{i}; 0, \Sigma_{k})$$

$$= \max_{\Sigma_{1},...,\Sigma_{K} \in \mathcal{S}} \sum_{i}^{N} \sum_{k}^{K} G_{ik} \log \mathcal{N}(\boldsymbol{x}_{i}; 0, \Sigma_{k})$$

$$= \max_{\Sigma_{1},...,\Sigma_{K} \in \mathcal{S}} \sum_{k}^{K} \sum_{i}^{N} G_{ik} \log \mathcal{N}(\boldsymbol{x}_{i}; 0, \Sigma_{k})$$

$$= \max_{\Sigma_{1},...,\Sigma_{K} \in \mathcal{S}} \sum_{k}^{K} \sum_{i \in \mathcal{I}_{k}} \log \mathcal{N}(\boldsymbol{x}_{i}; 0, \Sigma_{k})$$

$$= \sum_{k}^{K} \max_{\Sigma_{k} \in \mathcal{S}} \sum_{i \in \mathcal{I}_{k}} \log \mathcal{N}(\boldsymbol{x}_{i}; 0, \Sigma_{k}),$$

$$(25)$$

where $\mathcal{I}_k = \{i | 1 \leq i \leq N, G_{ik} = 1\}$. From Eq. (25), for deriving that Eq. (24) maximizes Eq. (23), it is sufficient to derive that the maximizer $\hat{\Sigma}_*$ of the following problem can be analytically solved by $\hat{\Sigma}_* = U_* \mathrm{Diag}(\max(\boldsymbol{d}_*, \sigma \mathbf{1}_D)) U_*^T$, where $\frac{1}{m_*} \sum_{i \in \mathcal{I}_*} \boldsymbol{x}_i \boldsymbol{x}_i^T = U_* \mathrm{Diag}(\boldsymbol{d}_*) U_*^T$ and $m_* = \# \mathcal{I}_*$:

$$\max_{\Sigma_* \in \mathcal{S}} \sum_{i \in \mathcal{I}_*} \log \mathcal{N}(\boldsymbol{x}_i; 0, \Sigma_*), \tag{26}$$

First, we consider the one-dimensional case (i.e., the case of D=1). In this case, Eq. (26) can be represented as follows:

$$\max_{\Sigma_* \ge \sigma} \sum_{i \in \mathcal{I}_*} \log \mathcal{N}(\boldsymbol{x}_i; 0, \Sigma_*)$$

$$= \max_{\Sigma_* \ge \sigma} -\frac{m}{2} \log(2\pi \Sigma_*) - \frac{m}{2\Sigma_*} d_*,$$
(27)

where $d_* = \frac{1}{m_*} \sum_i x_j^2$. Also, note that Σ_* and Σ_*^{\dagger} are both scalar values since D = 1. Since $\Sigma_* \geq \sigma$, it can be easily shown that the maximizer of Eq. (27) is $\hat{\Sigma}_* = \max(d_*, \sigma)$.

Next, we consider Eq. (26). In this case, we can derive that the mazimizer of Eq. (26) is $\hat{\Sigma}_* = U_* \operatorname{Diag}(\max(\boldsymbol{d}_*, \sigma \mathbf{1}_D)) U_*^T$ by first transforming data points with a matrix U_*^T so that each dimension of data points is decorrelated, then computing a covariance matrix $\operatorname{Diag}(\max(\boldsymbol{d}_k, \sigma \mathbf{1}_D))$ by solving Eq. (27) for each dimension, and finally re-transforming a computed matrix $\operatorname{Diag}(\max(\boldsymbol{d}_k, \sigma \mathbf{1}_D))$ with a matrix U_* .

2. Derivation of Eq. (11)

By applying singular value decomposition to $Diag(g_*)X$, we have:

$$\operatorname{Diag}(\boldsymbol{g}_*)X = V_*\Lambda_*U_*^T,\tag{28}$$

where Λ_* is a matrix such that $\Lambda_* \in \mathcal{R}^{N \times D}$ and $(\Lambda_*)_{ij} = (\lambda_*)_i$ if i = j, otherwise 0, and V_* is a matrix such that $V_* \in \mathcal{R}^{N \times N}$ and $V_*^T V_* = I$. Since a uncentered covariance matrix $\frac{1}{m} X^T \mathrm{Diag}(\boldsymbol{g}_*) \mathrm{Diag}(\boldsymbol{g}_*) X = U_* \mathrm{Diag}(\boldsymbol{d}_*) U_*^T$, we have:

$$U_* \operatorname{Diag}(\boldsymbol{d}_*) U_*^T$$

$$= \frac{1}{m_*} X^T \operatorname{Diag}(\boldsymbol{g}_*) \operatorname{Diag}(\boldsymbol{g}_*) X$$

$$= \frac{1}{m_*} U_* \operatorname{Diag}(\boldsymbol{\lambda}_k)^2 U_*^T,$$
(29)

therefore

$$(\lambda_*^2)_d = m_*(\boldsymbol{d}_*)_d. \tag{30}$$

First, by substituting $\hat{\Sigma}_* = U_* \text{Diag}(\max(\boldsymbol{d}_*, \sigma \mathbf{1}_D)) U_*^T$ into Eq. (26), we have:

$$\sum_{i \in \mathcal{I}_*} \log \mathcal{N}(\boldsymbol{x}_i; 0, \Sigma_*)$$

$$= -\sum_{d}^{D} \frac{m_*}{2} \log(2\pi \max(\sigma, (\boldsymbol{d}_*)_d)) + \frac{m_*}{2\max(\sigma, (\boldsymbol{d}_*)_d)} (\boldsymbol{d}_*)_d$$

$$= -m_* \sum_{d}^{D} \log \max(1, \sqrt{\frac{(\boldsymbol{d}_*)_d}{\sigma}}) + \frac{1}{2}\min(1, \frac{(\boldsymbol{d}_*)_d}{\sigma}) + \frac{1}{2}\log 2\pi\sigma$$

$$= -m_* \sum_{d}^{D} \log \max(1, \sqrt{\frac{(\boldsymbol{d}_*)_d}{\sigma}}) + \frac{1}{2}\min(1, \frac{(\boldsymbol{d}_*)_d}{\sigma}) + \frac{1}{2}\log 2\pi\sigma$$

$$= -m_* \sum_{d}^{D} \log \max(1, \frac{(\boldsymbol{\lambda}_*)_d}{\rho_*}) + \frac{1}{2}\min(1, \frac{(\boldsymbol{\lambda}_*)_d^2}{\rho_*^2}) + \frac{1}{2}\log 2\pi\sigma$$

$$= -\sum_{d}^{D} f_{\rho_*}((\boldsymbol{\lambda}_*)_d) + const.,$$
(31)

where $\rho_* = \sqrt{m_*\sigma}$ and $f_{\rho_*}(\lambda) = m_* \log \max(1, \frac{\lambda}{\rho_*}) + m_* \frac{1}{2} \min(1, \frac{\lambda^2}{\rho_*^2})$.

From Eq. (25) and Eq. (31), we have:

$$r(G, X)$$

$$= -\max_{\Sigma_{1}, \dots, \Sigma_{K} \in \mathcal{S}} \sum_{i}^{N} \log \sum_{k}^{K} G_{ik} \mathcal{N}(\boldsymbol{x}_{i}; 0, \Sigma_{k})$$

$$= -\sum_{k}^{K} \max_{\Sigma_{k} \in \mathcal{S}} \sum_{i \in \mathcal{I}_{k}} \log \mathcal{N}(\boldsymbol{x}_{i}; 0, \Sigma_{k})$$

$$= -\sum_{k}^{K} \sum_{d}^{D} f_{\rho_{k}}((\boldsymbol{\lambda}_{k})_{d}) + const.$$
(32)

3. Derivation of Eq. (17)

Because we can derive the maximizer of the problem $\max_{\Sigma_1,...,\Sigma_K \in \mathcal{S}} \sum_i^N \sum_k^K q(Z_{ik} = 1) \log \mathcal{N}(\boldsymbol{x}_i; 0, \Sigma_k)$ by following steps written in section 1, we omit derivation of this.

4. Proof of Proposition 1

Since we assume $\eta = 1$ and $\Sigma_1, ..., \Sigma_K$ are fixed, we can rewrite Eq. (13) as follows:

$$\max_{G \in \mathcal{H}} \sum_{i}^{N} \log \sum_{k}^{K} G_{ik} C_{ik}, \tag{33}$$

where $C_{ik} = \mathcal{N}(\boldsymbol{x}_i; 0, \Sigma_k)$, which is constant. For each i, if there is only a single value that equals to $\max_k C_{ik}$ in

 $C_{i1},...,C_{iK}$, the optimal solution $\hat{G} \in \mathcal{H}$ satisfies $\hat{G}_{ik} = \langle k = \underset{k' \in \{1,...,K\}}{\operatorname{arg max}} \hat{G}_{ik'} \rangle = G_{ik}^{\dagger}$, and even if it is not satisfied, $k^{\dagger} = \underset{k' \in \{1,...,K\}}{\operatorname{arg max}} \hat{G}_{ij'}$ satisfies $C_{ik^{\dagger}} = \underset{k' \in \{1,...,K\}}{\operatorname{max}} C_{ik}$, hence $\sum_{k}^{K} \hat{G}_{ik} C_{ik} = \sum_{k}^{K} G_{ik}^{\dagger} C_{ik}$ holds. Therefore, G^{\dagger} obtained by Eq. (21) is also the optimal solution of Eq. (13).

5. The Optimal Solutions of Soft Spectral Clustering Problem

In this section, we prove that an assignment matrix G is always one of the optimal solutions of $\epsilon(G, M) = \sum_{l=1}^{K} \frac{g_l^T M g_l}{g_l^T D g_l}$ if it can be factorized in the form of $G = \mathbf{1}_N \mathbf{v}^T$, where \mathbf{v} is a vector in the (K-1)-simplex and satisfies $(\mathbf{v})_i > 0$ for all i. We also assume that an affinity matrix M satisfies $M = M^T$ and $M_{ij} \ge 0$.

Since $D_{ii} = \sum_{j} M_{ij}$ and $D_{ij} = 0$ if $i \neq j$, we have:

$$\mathbf{g}^{T} M \mathbf{g} - \mathbf{g}^{T} D \mathbf{g} = \sum_{i,j} \mathbf{g}_{i} \mathbf{g}_{j} M_{ij} - \sum_{i,j} \mathbf{g}_{i}^{2} M_{ij}$$

$$= -\sum_{i,j} (\mathbf{g}_{i} - \mathbf{g}_{j})^{2} M_{ij} \leq 0$$
(34)

Specifically, Eq. (34) is maximized if $(g)_i = (g)_j$ holds for all (i, j). By Eq. (34), we have:

$$\epsilon(G, M) = \sum_{l=1}^{K} \frac{g_l^T M g_l}{g_l^T D g_l}$$

$$= K + \sum_{l=1}^{K} \frac{g_l^T M g_l - g_l^T D g_l}{g_l^T D g_l}$$

$$= K - \sum_{l=1}^{K} \frac{\sum_{i,j} ((g_l)_i - (g_l)_j)^2 M_{ij}}{g_l^T D g_l}$$

$$\leq K$$

$$(35)$$

Specifically, $\epsilon(G,M)$ is maximized if $(\mathbf{g}_l)_i = (\mathbf{g}_l)_j$ holds for all (i,j,l). Therefore, when $G = \mathbf{1}_N \mathbf{v}^T$ and \mathbf{v} is in the (K-1)-simplex and satisfies $(\mathbf{v})_i > 0$ for all i, it is one of the optimal solutions of $\epsilon(G,M) = \sum_{l=1}^K \frac{\mathbf{g}_l^T M \mathbf{g}_l}{\mathbf{g}_l^T D \mathbf{g}_l}$.