Subspace Structure-aware Spectral Clustering for Robust Subspace Clustering:
Supplementary Material

1. Derivation of Eq. (10)

In this section, we consider the following problem:
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where § = {¥[X € RP*P'S) = ¥T and ¥ = oI}. In the following, we will derive that the maximizers of Eq. (23)
31, ..., X can be analytically solved as follows:
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where ﬁ > Giwzixl = UyDiag(di)UL . Since G, € {0,1} and G1x = 1y, Eq. (23) can be represented as follows:
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where 7, = {i|1 <i < N, G, = 1}. From Eq. (25), for deriving that Eq. (24) maximizes Eq. (23), it is sufficient to derive
that the maximizer 3, of the following problem can be analytically solved by 3, = U,Diag(max(d.,o1lp))UZL, where
i Yoier, ®iw] = U,Diag(d.)U] and m. = #T.:

max Z log N (x50, %), (26)

LEI

First, we consider the one-dimensional case (i.e., the case of D = 1). In this case, Eq. (26) can be represented as follows:
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where d, = x? Also, note that >, and EI are both scalar values since D = 1. Since ¥, > o, it can be easily shown

that the maximizer of Eq. (27) is ¥, = max(dy, o).

Next, we consider Eq. (26). In this case, we can derive that the mazimizer of Eq. (26) is S, =U. .Diag(max(d.,olp))UL
by first transforming data points with a matrix U so that each dimension of data points is decorrelated, then computing a
covariance matrix Diag(max(dg,01p)) by solving Eq. (27) for each dimension, and finally re-transforming a computed
matrix Diag(max(dy,o1lp)) with a matrix U,.

2. Derivation of Eq. (11)
By applying singular value decomposition to Diag(g.)X, we have:
Diag(g.)X = VLA UL, (28)
where A, is a matrix such that A, € RV*P and (A.);; = (A\.); if i = j, otherwise 0, and V; is a matrix such that

V. € RV*N and V'V, = I. Since a uncentered covariance matrix -~ X7 Diag(g.)Diag(g.)X = U.Diag(d,)UL, we
have:
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First, by substituting 3, = U, Diag(max(d,,c1p))UZ into Eq. (26), we have:
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where p, = /m.o and f,_(\) = m, log max(1, p%) + m, zmin(1, 2—5)



From Eq. (25) and Eq. (31), we have:
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3. Derivation of Eq. (17)

Because we can derive the maximizer of the problem maxs, s, es Z Z v 4(Zip = 1)1og N (x;;0, Xj,) by following
steps written in section 1, we omit derivation of this.

4. Proof of Proposition 1

Since we assume n = 1 and X1, ..., X i are fixed, we can rewrite Eq. (13) as follows:
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where C;, = N(x;;0,Xg), which is constant. For each 14, if there is only a single value that equals to maxy, Cyy in
Ci1,...,Cik, the optimal solution G € H satisfies Gy =< k = arg max G >= ij, and even if it is not satis-
ke{l,.. K}
fied, k' = arg max G”/ satisfies C;+ = maxy C;x, hence Zk GinCir = Zk leC’Zk holds. Therefore, G obtained by
k'e{l1,...,K}
Eq. (21) is also the optimal solution of Eq. (13).

5. The Optimal Solutions of Soft Spectral Clustering Problem
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if it can be factorized in the form of G' = 1yv”, where v is a vector in the (K — 1)-simplex and satisfies (v); > 0 for all i.
We also assume that an affinity matrix M satisfies M = M T and M;; > 0.
Since D;; = Zj M;j and D;; = 0if i # j, we have:
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In this section, we prove that an assignment matrix G is always one of the optimal solutions of (G, M) =

(34
=— Z )2M;; <0
Specifically, Eq. (34) is maximized if (g); = (g), holds for all (g, 7).
By Eq. (34), we have:
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Specifically, (G, M) is maximized if (g;); = (gi); holds for all (i, j,1). Therefore, when G = 1yv” and v is in the
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(K — 1)-simplex and satisfies (v); > 0 for all 4, it is one of the optimal solutions of (G, M) =3 ";_, 9T Dar "
1



