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1. Derivation of Eq. (10)
In this section, we consider the following problem:

max
Σ1,...,ΣK∈S

N∑
i

log
K∑
k

GikN (xi; 0,Σk), (23)

where S = {Σ|Σ ∈ RD×D,Σ = ΣT and Σ ⪰ σI}. In the following, we will derive that the maximizers of Eq. (23)
Σ̂1, ..., Σ̂K can be analytically solved as follows:

Σ̂k = UkDiag(max(dk, σ1D))UT
k , (24)

where 1∑
i Gik

∑
i Gikxix

T
i = UkDiag(dk)U

T
k . Since Gij ∈ {0, 1} and G1K = 1N , Eq. (23) can be represented as follows:

max
Σ1,...,ΣK∈S

N∑
i

log

K∑
k

GikN (xi; 0,Σk)

= max
Σ1,...,ΣK∈S

N∑
i

K∑
k

Gik logN (xi; 0,Σk)

= max
Σ1,...,ΣK∈S

K∑
k

N∑
i

Gik logN (xi; 0,Σk)

= max
Σ1,...,ΣK∈S

K∑
k

∑
i∈Ik

logN (xi; 0,Σk)

=
K∑
k

max
Σk∈S

∑
i∈Ik

logN (xi; 0,Σk),

(25)

where Ik = {i|1 ≤ i ≤ N,Gik = 1}. From Eq. (25), for deriving that Eq. (24) maximizes Eq. (23), it is sufficient to derive
that the maximizer Σ̂∗ of the following problem can be analytically solved by Σ̂∗ = U∗Diag(max(d∗, σ1D))UT

∗ , where
1

m∗

∑
i∈I∗

xix
T
i = U∗Diag(d∗)U

T
∗ and m∗ = #I∗:

max
Σ∗∈S

∑
i∈I∗

logN (xi; 0,Σ∗), (26)

First, we consider the one-dimensional case (i.e., the case of D = 1). In this case, Eq. (26) can be represented as follows:

max
Σ∗≥σ

∑
i∈I∗

logN (xi; 0,Σ∗)

= max
Σ∗≥σ

−m

2
log(2πΣ∗)−

m

2Σ∗
d∗,

(27)

1



where d∗ = 1
m∗

∑
i x

2
j . Also, note that Σ∗ and Σ†

∗ are both scalar values since D = 1. Since Σ∗ ≥ σ, it can be easily shown
that the maximizer of Eq. (27) is Σ̂∗ = max(d∗, σ).

Next, we consider Eq. (26). In this case, we can derive that the mazimizer of Eq. (26) is Σ̂∗ = U∗Diag(max(d∗, σ1D))UT
∗

by first transforming data points with a matrix UT
∗ so that each dimension of data points is decorrelated, then computing a

covariance matrix Diag(max(dk, σ1D)) by solving Eq. (27) for each dimension, and finally re-transforming a computed
matrix Diag(max(dk, σ1D)) with a matrix U∗.

2. Derivation of Eq. (11)
By applying singular value decomposition to Diag(g∗)X , we have:

Diag(g∗)X = V∗Λ∗U
T
∗ , (28)

where Λ∗ is a matrix such that Λ∗ ∈ RN×D and (Λ∗)ij = (λ∗)i if i = j, otherwise 0, and V∗ is a matrix such that
V∗ ∈ RN×N and V T

∗ V∗ = I . Since a uncentered covariance matrix 1
mXTDiag(g∗)Diag(g∗)X = U∗Diag(d∗)U

T
∗ , we

have:

U∗Diag(d∗)U
T
∗

=
1

m∗
XTDiag(g∗)Diag(g∗)X

=
1

m∗
U∗Diag(λk)

2UT
∗ ,

(29)

therefore

(λ2
∗)d = m∗(d∗)d. (30)

First, by substituting Σ̂∗ = U∗Diag(max(d∗, σ1D))UT
∗ into Eq. (26), we have:∑

i∈I∗

logN (xi; 0,Σ∗)

=−
D∑
d

m∗

2
log(2πmax(σ, (d∗)d)) +

m∗

2max(σ, (d∗)d)
(d∗)d

=−m∗

D∑
d

logmax(1,

√
(d∗)d
σ

) +
1

2
min(1,

(d∗)d
σ

) +
1

2
log 2πσ

=−m∗

D∑
d

logmax(1,

√
(d∗)d
σ

) +
1

2
min(1,

(d∗)d
σ

) +
1

2
log 2πσ

=−m∗

D∑
d

logmax(1,
(λ∗)d
ρ∗

) +
1

2
min(1,

(λ∗)
2
d

ρ2∗
) +

1

2
log 2πσ

=−
D∑
d

fρ∗((λ∗)d) + const.,

(31)

where ρ∗ =
√
m∗σ and fρ∗(λ) = m∗ logmax(1, λ

ρ∗
) +m∗

1
2min(1, λ2

ρ2
∗
).
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From Eq. (25) and Eq. (31), we have:

r(G,X)

=− max
Σ1,...,ΣK∈S

N∑
i

log

K∑
k

GikN (xi; 0,Σk)

=−
K∑
k

max
Σk∈S

∑
i∈Ik

logN (xi; 0,Σk)

=−
K∑
k

D∑
d

fρk
((λk)d) + const.

(32)

3. Derivation of Eq. (17)

Because we can derive the maximizer of the problem maxΣ1,...,ΣK∈S
∑N

i

∑K
k q(Zik = 1) logN (xi; 0,Σk) by following

steps written in section 1, we omit derivation of this.

4. Proof of Proposition 1
Since we assume η = 1 and Σ1, ...,ΣK are fixed, we can rewrite Eq. (13) as follows:

max
G∈H

N∑
i

log
K∑
k

GikCik, (33)

where Cik = N (xi; 0,Σk), which is constant. For each i, if there is only a single value that equals to maxk Cik in
Ci1, ..., CiK , the optimal solution Ĝ ∈ H satisfies Ĝik =< k = arg max

k′∈{1,...,K}
Ĝik′ >= G†

ik, and even if it is not satis-

fied, k† = arg max
k′∈{1,...,K}

Ĝij′ satisfies Cik† = maxk Cik, hence
∑K

k ĜikCik =
∑K

k G†
ikCik holds. Therefore, G† obtained by

Eq. (21) is also the optimal solution of Eq. (13).

5. The Optimal Solutions of Soft Spectral Clustering Problem

In this section, we prove that an assignment matrix G is always one of the optimal solutions of ϵ(G,M) =
∑K

l=1
gT
l Mgl

gT
l Dgl

if it can be factorized in the form of G = 1NvT , where v is a vector in the (K − 1)-simplex and satisfies (v)i > 0 for all i.
We also assume that an affinity matrix M satisfies M = MT and Mij ≥ 0.

Since Dii =
∑

j Mij and Dij = 0 if i ̸= j, we have:

gTMg − gTDg =
∑
i,j

gigjMij −
∑
i,j

g2
iMij

= −
∑
i,j

(gi − gj)
2Mij ≤ 0

(34)

Specifically, Eq. (34) is maximized if (g)i = (g)j holds for all (i, j).
By Eq. (34), we have:

ϵ(G,M) =
K∑
l=1

gT
l Mgl
gT
l Dgl

= K +
K∑
l=1

gT
l Mgl − gT

l Dgl
gT
l Dgl

= K −
K∑
l=1

∑
i,j((gl)i − (gl)j)

2Mij

gT
l Dgl

≤ K

(35)
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Specifically, ϵ(G,M) is maximized if (gl)i = (gl)j holds for all (i, j, l). Therefore, when G = 1NvT and v is in the

(K − 1)-simplex and satisfies (v)i > 0 for all i, it is one of the optimal solutions of ϵ(G,M) =
∑K

l=1
gT
l Mgl

gT
l Dgl

.
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