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The following items are included in the supplementary
materials:

• Comparisons with single/multi-feature concatenation
strategies on ShanghaiTech Dataset.

• The architecture of PENet and the details of three train-
ing phases of PENet.

• The visualization of estimated perspective maps in
each phase of training PENet.

• Reliability of the prediction of PENet.

• More density maps predicted by the proposed PGC-
Net.

A. More Comparisons with Single/Multi-
feature Concatenation Strategies

To verify the effectiveness of our single-column ar-
chitecture, we compare it with two kinds of feature
concatenations, i.e. single- and multi-feature concatena-
tions. Denoted by Θi

k the parameters of i-th convolu-
tion layer with kernel size k in our network. F i−1(X)
denotes the feature of (i − 1)-th convolution layer with
the input X . Then, Θi

k(F i−1(X)) is the feature gen-
erated by Θi

k given F i−1(X) as input. The single-
feature concatenation (k × k) indicates the concatenation
of Θi

k(F i−1(X)) and F i−1(X); on the other hand, the
multi-feature concatenation (1⊗K) indicates the concatena-
tion of Θi

1(F i−1(X)),Θi
3(F i−1(X)), · · · ,Θi

K(F i−1(X))
and F i−1(X). The comparisons are conducted on Shang-
haiTech Part A, and the results are shown in Table 1. It is
observed that our PGC block noticeably outperforms both
single- and multi-feature concatenation strategies, which in-
dicates its feasibility over conventional feature concatena-
tions with fixed kernel size. Besides, tables 2, 3, 4, 5, 6
†This work was done when Zhaoyi Yan was a research intern at Baidu
∗Corresponding author

Single feature concatenation Multi-feature concatenation
architecture MAE MSE architecture MAE MSE

1 × 1 68.0 105.8 1⊗1 68.0 105.8
3 × 3 67.1 104.0 1⊗3 67.8 103.7
5 × 5 66.4 104.5 1⊗5 67.0 104.9
7 × 7 66.9 105.2 1⊗7 66.8 104.8
Ours 65.8 98.0 - - -

Table 1. Comparison between the PGC block and different feature
concatenation strategies on ShanghaiTech Part A.

show the results when we adopt 2, 3, 4, 5, 6 feature con-
catenation blocks, respectively. In summary, our PGCNet
can still outperform traditional feature concatenation by a
large margin when stacking multiple PGC blocks.

Single feature concatenation Multi-feature concatenation
ShanghaiTech Part A

architecture MAE MSE architecture MAE MSE
1 × 1 68.11 105.95 1⊗1 68.11 105.95
3 × 3 68.36 105.30 1⊗3 66.48 103.71
5 × 5 67.86 106.11 1⊗5 67.03 105.04
7 × 7 68.39 105.80 1⊗7 67.55 106.66
Ours 64.46 96.61 - - -

ShanghaiTech Part B
1 × 1 10.14 15.70 1⊗1 10.14 15.70
3 × 3 10.10 15.87 1⊗3 10.34 16.02
5 × 5 10.04 16.17 1⊗5 10.43 16.03
7 × 7 9.96 16.36 1⊗7 10.48 15.94
Ours 9.62 15.39 - - -

Table 2. Comparison between PGC and different feature concate-
nation strategies when adopting 2 PGC blocks.

B. The Architecture of PENet and the Training
Details

We adopt Convolution-LeakyReLU as the basic pattern
of the encoder Ep, with each block scaling down the en-
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Single feature concatenation Multi-feature concatenation
ShanghaiTech Part A

architecture MAE MSE architecture MAE MSE
1 × 1 68.78 103.68 1⊗1 68.78 103.68
3 × 3 68.74 106.03 1⊗3 67.84 104.90
5 × 5 69.92 105.07 1⊗5 67.91 106.59
7 × 7 67.79 106.66 1⊗7 67.34 104.71
Ours 60.94 95.23 - - -

ShanghaiTech Part B
1 × 1 9.97 15.68 1⊗1 9.97 15.68
3 × 3 9.78 15.64 1⊗3 9.99 15.59
5 × 5 9.91 15.87 1⊗5 10.11 15.71
7 × 7 9.94 15.96 1⊗7 10.37 16.20
Ours 9.21 14.85 - - -

Table 3. Comparison between PGC and different feature concate-
nation strategies when adopting 3 PGC blocks.

Single feature concatenation Multi-feature concatenation
ShanghaiTech Part A

Single feature concatenation Multi-feature concatenation
architecture MAE MSE architecture MAE MSE

1 × 1 69.03 105.01 1⊗1 69.03 105.01
3 × 3 70.87 108.97 1⊗3 77.67 121.12
5 × 5 69.51 101.59 1⊗5 70.36 107.60
7 × 7 70.14 105.04 1⊗7 70.32 106.48
Ours 58.52 89.50 - - -

ShanghaiTech Part B
1 × 1 9.92 16.22 1⊗1 9.92 16.22
3 × 3 9.82 15.80 1⊗3 10.18 15.81
5 × 5 9.65 15.40 1⊗5 10.10 15.88
7 × 7 9.79 15.72 1⊗7 10.15 16.05
Ours 9.10 14.43 - - -

Table 4. Comparison between PGC and different feature concate-
nation strategies when adopting 4 PGC blocks.

Single feature concatenation Multi-feature concatenation
ShanghaiTech Part A

architecture MAE MSE architecture MAE MSE
1 × 1 67.69 104.48 1⊗1 67.69 104.48
3 × 3 70.70 110.53 1⊗3 77.47 119.94
5 × 5 68.17 103.19 1⊗5 69.98 108.13
7 × 7 70.25 106.31 1⊗7 69.51 107.02
Ours 56.98 86.02 - - -

ShanghaiTech Part B
1 × 1 9.76 15.67 1⊗1 9.76 15.67
3 × 3 9.91 16.02 1⊗3 10.64 16.87
5 × 5 9.97 15.73 1⊗5 10.03 15.94
7 × 7 10.21 16.26 1⊗7 10.38 16.45
Ours 8.84 13.66 - - -

Table 5. Comparison between PGC and different feature concate-
nation strategies when adopting 5 PGC blocks.

Single feature concatenation Multi-feature concatenation
ShanghaiTech Part A

architecture MAE MSE architecture MAE MSE
1 × 1 69.03 105.01 1⊗1 69.03 105.01
3 × 3 70.87 108.97 1⊗3 77.24 116.90
5 × 5 71.34 108.98 1⊗5 73.71 119.42
7 × 7 72.48 110.42 1⊗7 73.83 112.81
Ours 58.26 90.18 - - -

ShanghaiTech Part B
1 × 1 10.03 16.19 1⊗1 10.03 16.19
3 × 3 10.20 16.25 1⊗3 11.34 18.52
5 × 5 10.44 17.03 1⊗5 10.56 17.30
7 × 7 10.65 16.93 1⊗7 10.80 17.58
Ours 9.01 14.20 - - -

Table 6. Comparison between PGC and different feature concate-
nation strategies when adopting 6 PGC blocks.

coder feature by ratio 2. While the decoder enlarges the res-
olution of encoded feature by the combination of UpConv-
ReLU. Details of the architecture of PENet are demon-
strated in Table 8.

In the first phase, PENet is trained to reconstruct the
input when given certain perspective map. As PGCNet
adopts CSRNet as the baseline, the resolution of perspec-
tive needed by PGC block is only 1/8 size of the original
input. Therefore, we do not need to predict the full resolu-
tion of perspective map. We downsample the original im-
age to make the resized image be only 1/8 resolution of the
original image and then train PENet as an identity mapping
of perspective maps. We get 0.020 MAE and 0.031 MSE in
this phase.

In the second stage, we fix the parameters of Dp trained
in the first phase, and only train Ep, aiming at construct-
ing the perspective map from its corresponding RGB image.
We get 0.101 MAE and 0.142 MSE in the second training
phase. And finally in the third stage, Ours A denotes di-
rectly adopting the estimated perspective map of PENet as
the ground-truth, while Ours B represents the PENet is em-
bedded as a perspective estimation branch and the whole
network can be trained end-to-end. Quantitative results of
Ours A and Ours B have been demonstrated in Sec. 5.3.

C. The Visualization of Estimated Perspective
Maps in Each Phase of Training PENet

Beyond the quantitative results given in Sec. B, we also
demonstrate visualizations of perspective maps in these
three phases. Fig. 1(a)(b) show the input / ground-truth
and estimated perspective map, respectively. It can be seen
that our PENet performs well in reconstructing the input in
the first phase. Fig. 2 demonstrates two examples of esti-
mated maps predicted by PENet. PENet generally produces
roughly accurate perspective maps, showing its robustness



in dealing with different scenes. Taking into account the
quantitative results, it is obvious that PENet is capable of
predicting a meaningful perspective map quantitatively and
qualitatively in the first two stages.

For the third phase, Fig. 3 shows the estimated perspec-
tive maps of Ours A and Ours B, respectively shown in
the second and third columns. Comparing these two im-
ages in Fig. 3(a) vertically, it can be seen that the visual
angle of the image in the second row is relatively larger
than that of the image in the first row. This observation
accords with the directly estimated maps in the Fig. 3(b),
which can been seen that the second image contains more
larger values comparing with the first image does. When we
train the whole network end-to-end, the perspective estima-
tion branch can still predict generally satisfying perspective
maps (i.e., Fig. 3(c)). It is seen that larger perspective values
move from the right to the left, which is visually explana-
tory.

Therefore, our PENet works well either in directly pre-
dicting perspective maps or in functioning as the perspec-
tive map estimator of the end-to-end architecture.

D. Reliability of the Prediction of PENet

PENet is designed as a compromise of the situation that
perspective annotations are unavailable, in which the reli-
ability of PENet is essential. Therefore, we conduct an
experiment to confirm the feasibility of PENet. Table 7
demonstrates the comparisons of adopting the ground-truth
or the estimated perspective map as the guidance of spa-
tially variant smoothing on ShanghaiTech Part A/B and
WorldExpo’10. MAEs are respectively 58.1, 9.0 and 8.3,
with a small decrease of 1.1, 0.2 and 0.2, respectively. This
indicates that PENet is competent to a reasonable perspec-
tive map estimator.

Perspective Map ShanghaiTech Part A/B WorldExpo’10
Estimated 58.1/9.0 8.3

Ground-truth 57.0/8.8 8.1

Table 7. Different guidances of PGC on ShanghaiTech Part A/B
and WorldExpo’10.

E. More Density Maps Predicted by the Pro-
posed PGCNet

Figs. 4 and 5 demonstrate more density maps predicted
by PGCNet as well as by CSRNet. From the visualization, it
can be seen that our PGCNet shows its superiority to CSR-
Net in estimating a more accurate number of pedestrians in
either sparse or congested scenes. The quantitative results
have been shown in Sec. 5.

(b) Output (c) RGB Image(a) Input / Ground-truth

Figure 1. Results of the first phase of training PENet. Given (a) the
input of PENet, (b) is the reconstructing output, and (c) denotes the
corresponding RGB image.

(a) Input (b) Output (c) Ground-truth

Figure 2. Results of second phase of training PENet. Given (a) the
input of PENet, (b) is the output of PENet, and (c) represents the
ground-truth.

(a) (b) (c)

Figure 3. Results of third phase of training PENet. Given (a) the
original RGB image, (b) is the corresponding perspective map
directly predicted by PENet, and (c) represents perspective map
when training end-to-end.

The architecture of PENet
Conv. (3, 3, 64), stride=2; LReLU
Conv. (3, 3, 128), stride=2; LReLU
Conv. (3, 3, 256), stride=2; LReLU
Conv. (3, 3, 512), stride=2; LReLU

UpConv. (3, 3, 256), stride=2; ReLU
UpConv. (3, 3,128), stride=2; ReLU
UpConv. (3, 3, 64), stride=2; ReLU
UpConv. (3, 3, 1), stride=2; ReLU

Table 8. The architecture of PENet. “LReLU” denotes leaky ReLU
with the slope of 0.2.



(b) CSRNet (c) Ours(a) Input (d) Ground-truth

Count : 57.8 Count : 52.0Count : 39.1

Count : 82.0Count : 86.9Count : 58.6

Count : 518.6 Count : 447.1 Count : 423.0

Count : 147.3 Count : 199.7 Count : 212.0

Count : 220.6 Count : 248.3 Count : 265.0

Count : 373.0Count : 342.5Count : 273.1

Figure 4. Results of density map estimation of CSRNet and our PGCNet.



(b) CSRNet (c) Ours(a) Input (d) Ground-truth

 Count : 97.4  Count : 101.0Count:87.8

Count : 1581.0Count : 1090.6 Count : 1359.7

Count : 1116.2 Count : 1266.0Count : 1018.3

Count : 939.1  Count :1071.5  Count:1111.0

Count : 309.0 Count : 263.2Count : 224.0 

Count : 361.0Count : 376.4Count : 331.9

Count : 621.5 Count : 681.4 Count : 717.0

Figure 5. Results of density map estimation of CSRNet and our PGCNet.


