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1. More Comparison with State-of-the-Art
1.1. Quantitative Evaluation

We compare our video saliency model (RCRNet+NER)
against 16 state-of-the-art image/video saliency methods,
including MC [3], RBD [20], MB+ [19], RFCN [14],
DCL [6], DHS [8], DSS [2], MSR [4], DGRL [15],
PiCA [9], SAG [16], GF [17], SSA [7], FCNS [18],
FGRN [5], and PDB [13]. A more detailed quantitative
comparison of maximum F-measure, S-measure, weighted
F-measure, and mean absolute error (MAE) on VOS [7],
DAVIS [12] and FBMS [1] datasets is presented in Ta-
ble 1. The weighted F-measure is proposed in [10] to mit-
igate the interpolation flaw, dependency flaw, and equal-
importance flaw of traditional evaluation metrics. Here, we
use the code provided by the authors with the default set-
ting. MAE is defined as the average absolute difference be-
tween the binary ground truth and the saliency map at the
pixel level [11]. As shown in Table 1, our method outper-
forms all existing salient object detection algorithms across
all datasets. Specifically, our method improves the maxi-
mum F-measure achieved by the existing best-performing
algorithms by 15.52%, 1.18%, and 4.62% respectively on
VOS, DAVIS, and FBMS, and improves the S-measure by
9.41%, 0.68%, 2.72% accordingly. Moreover, our method
improves the weighted F-measure by 17.04%, 3.23%, and
3.68% respectively on VOS, DAVIS, and FBMS, and re-
duces the MAE by 34.67%, 6.67%, and 5.26% accordingly.

1.2. Qualitative Evaluation

Figs. 1 and 2 show more visual comparisons of salient
region detection results generated by 9 representative state-
of-the-art models, including DCL [6], DHS [8], DSS [2],
MSR [4], SSA [7], FCNS [18], FGRN [5], PDB [13],
and our proposed RCRNet+NER. The ground truth (GT)
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is shown in the last column. RCRNet+NER consistently
produces saliency maps closest to the ground truth.

2. Sensitivities to Different Amount of Ground
Truth and Pseudo-Labels Usage

To demonstrate the effectiveness of our proposed semi-
supervised framework, we explore the sensitivities to differ-
ent amount of ground truth and pseudo-labels usage on the
VOS [7] dataset. We fine-tune our proposed video saliency
detector RCRNet+NER with different number of GT and
pseudo-labels. Detailed quantitative results on the test set of
VOS are presented in Table 2. As seen, models cannot gen-
erate temporally consistent saliency maps when the train-
ing data set is seriously deficient (e.g., 5%) , which results
in inferior performance. Nevertheless, an interesting phe-
nomenon is that when there are enough training data with
similar appearance, given more annotation data does not
guarantee continuous performance improvement. This phe-
nomenon may be due to model overfitting caused by label
ambiguity. Based on the above observations, we propose
jointly training RCRNet+NER with an appropriate num-
ber of pseudo-labels (e.g., 20%) and GT labels (e.g., 20%).
Experimental results demonstrate the effectiveness of using
pseudo-labels for training. Moreover, our semi-supervised
RCRNet+NER (column ‘1 / 5’ in the table) can even out-
perform the one trained with all annotated frames.
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VOS [7] DAVIS [12] FBMS [1]Methods Pub.
Fmaxβ ↑ S ↑ Fwβ ↑ MAE↓ Fmaxβ ↑ S ↑ Fwβ ↑ MAE↓ Fmaxβ ↑ S ↑ Fwβ ↑ MAE↓
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Table 1. Comparison of quantitative results using maximum F-measure Fmaxβ (larger is better), S-measure S (larger is better), weighted
F-measure Fwβ (larger is better), and MAE (smaller is better). The best three results on each dataset are shown in red, blue, and green,
respectively. Symbols of model categories: I+C for image-based classic unsupervised or non-deep learning methods, I+D for image-based
deep learning methods, V+U for video-based unsupervised methods, V+D for video-based deep learning methods.

Labels m / l 0 / 1 0 / 2 0 / 3 2 / 3 0 / 5 1 / 5 2 / 5 4 / 5 0 / 7 1 / 7 2 / 7 6 / 7

Proportion GT 100% 50% 33.3% 33.3% 20% 20% 20% 20% 14.3% 14.3% 14.3% 14.3%
Pseudo 0% 0% 0% 0% 0% 20% 40% 80% 0% 14.3% 28.6% 85.7%

Metric Fmaxβ ↑ 0.849 0.850 0.852 0.851 0.849 0.861 0.851 0.850 0.847 0.856 0.851 0.846
S ↑ 0.873 0.869 0.873 0.873 0.867 0.874 0.869 0.873 0.866 0.872 0.869 0.867

Labels m / l 0 / 10 2 / 10 3 / 10 9 / 10 0 / 15 4 / 15 5 / 15 14 / 15 0 / 20 6 / 20 7 / 20 19 / 20

Proportion GT 10% 10% 10% 10% 6.7% 6.7% 6.7% 6.7% 5% 5% 5% 5%
Pseudo 0% 20% 30% 90% 0% 26.7% 33.3% 93.3% 0% 30% 35% 95%

Metric Fmaxβ ↑ 0.839 0.859 0.850 0.849 0.823 0.849 0.851 0.849 0.821 0.847 0.847 0.845
S ↑ 0.861 0.872 0.868 0.867 0.842 0.866 0.868 0.865 0.832 0.861 0.861 0.860

Table 2. More quantitative results on different amount of ground truth (GT) and pseudo-labels usage. Here, l refers to GT label interval,
and m denotes the number of pseudo-labels used in each interval. For example, ‘0 / 5’ means using one GT every five frames with no
pseudo-labels. ‘1 / 5’ means using one GT and generating one pseudo-label every five frames. And so on.
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Figure 1. Visual comparison of saliency maps generated by state-of-the-art methods, including our RCRNet+NER. The ground truth (GT)
is shown in the last column. Our model consistently produces saliency maps closest to the ground truth. Zoom in for details.
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Figure 2. Visual comparison of saliency maps generated by state-of-the-art methods, including our RCRNet+NER. The ground truth (GT)
is shown in the last column. Our model consistently produces saliency maps closest to the ground truth. Zoom in for details.


