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A. Global Comparison

Table 1 includes all metrics reported by the official
DAVIS 2016 benchmark [13]. Our method substantially
outperforms competing methods in the main evaluation
metrics of mean region similarity J and mean contour ac-
curacy F . The small decay measure for both J and F
shows AD-Net’s long-term benefits on performance.

B. Per-sequence Comparison

Figures 1 and 2 compare the per-sequence J and F of
AD-Net against top 7 competing methods on the leader-
board. Our method performs well on videos presenting a va-
riety of challenges, such as large appearance changes (Car-
Shadow, Parkour), cluttered background (Car-Roundabout,
Scooter-Black), heavy occlusion (Libby, Bmx-Trees), fast
motion (Bmx-Trees, Dog, Parkour), etc.

C. Qualitative Analysis on FBMS and ViSal

In Figures 3 and 4, we visualise segmentation results on
videos from the test set of FBMS [11] and ViSal [19] re-
spectively. The model is trained only with the DAVIS 2016
training set. We do not fine-tune it on the training set of
FBMS or ViSal.

D. Foreground Correspondence Analysis

In Figure 5, we visualise more examples of foreground
pixel correspondences to pixels in the anchor frame. Most
pixels are randomly selected from the foreground area on
the last frame of the video (except when foreground be-
comes too small in the last frame, in which case another
frame is randomly chosen).

∗Equal contribution.

E. Instance Pruning
Algorithm 1 details the instance pruning procedure.

Function SmallStatic returns a set of bounding boxes and
the corresponding instance masks that represent small and
nearly static instances determined from their trajectories.
Then function GetPruningMask takes these instances
and the original masks as inputs, and generates a pruning
mask per frame, which incorporates all small and static
instances that are significantly smaller than the largest in-
stance in the current frame. Finally, each original mask
is multiplied element-wise with the corresponding pruning
mask to output the final predictions.
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Measure ADNet MotAdapt[14] PDB[15] ARP[7] LVO[18] FSEG[5] LMP[17] SFL[1] TIS[4] ELM[8] FST[12] CUT[6] NLC[2] MSG[10] KEY[9] CVOS[16] TRC[3]
J Mean ↑ 81.7 77.2 77.2 76.2 75.9 70.7 70.0 67.4 62.6 61.8 55.8 55.2 55.1 53.3 49.8 48.2 47.3
J Recall ↑ 90.9 87.8 90.1 91.1 89.1 83.5 85.0 81.4 80.3 67.2 64.9 57.5 55.8 61.6 59.1 54.0 49.3
J Decay ↓ 2.2 5.0 0.9 7.0 0.0 1.5 1.3 6.2 7.1 9.8 0.0 2.2 12.6 2.4 14.1 10.5 8.3
F Mean ↑ 80.5 77.4 74.5 70.6 72.1 65.3 65.9 66.7 59.6 61.2 51.1 55.2 52.3 50.8 42.7 44.7 44.1
F Recall ↑ 85.1 84.4 84.4 83.5 83.4 73.8 79.2 77.1 74.5 65.4 51.6 61.0 51.9 60.0 37.5 52.6 43.6
F Decay ↓ 0.6 3.3 -0.2 7.9 1.3 1.8 2.5 5.1 6.4 8.8 2.9 3.4 11.4 5.1 10.6 11.7 12.9

T (GT 8.8) ↓ 36.9 27.9 29.1 39.3 26.5 32.8 57.2 28.2 33.6 25.1 36.6 27.7 42.5 30.1 26.9 25.0 39.1

Table 1. Detailed evaluation results on the DAVIS 2016 validation set. We analyse region similarity J , contour accuracy F , and temporal
stability T in terms of mean, recall, and decay, and compare with state-of-the-art methods from the DAVIS 2016 leaderboard.
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Figure 1. Per-sequence results of mean region similarity J against top 7 methods on the public leaderboard of DAVIS 2016. The blue line
indicates AD-Net, while bars represent other methods. Sequences are organised in descending order of the performance of our method.
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Figure 2. Per-sequence results of mean contour accuracy F against top 7 methods on the public leaderboard of DAVIS 2016. The blue line
indicates AD-Net, while bars represent other methods. Sequences are organised in descending order of the performance of our method.
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Figure 3. Segmentation results on challenging videos from FBMS without fine-tuning.
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Algorithm 1 Instance Pruning
Input: original masks X = [x0, ..., xN−1], bounding
boxes/instance masks E = [E0, ..., EM−1], for N frames
and M total instances
Output: refined masks X ′

size low ← Area(Sort(E)[−N ])
T ← SmallStatic(E, 0.6, 0.5N, size low)
for t = 1 to N do

Let bt be instances on frame t from E
F ← GetPruningMask(xt, T, size low)
xt ← xt � F

end for
return X
function SmallStatic(b, iou, support, size)
sm stat instances← ∅
for bi in b do

for bj in b do
count← 0
if IoU(bi, bj) > iou then
count← count+ 1

end if
end for
if count > support and Size(bi) < size then

Add bi to sm stat instances
end if

end for
return sm stat instances

end function
function GetPruningMask(xt, T, s)
pruning mask ← ∅, target size← −∞
Tt ← Sort(Tt, descending)
if Size(Tt[0]) > s & Len(Tt) > 0 & Size(Tt[0]) >
2Size(Tt[1]) then
target size← Size(Tt[0])

end if
for all Tt[i] in Tt do

if Size(Tt[i]) <
target size

3 then
pruning mask ← pruning mask ∪ Tt[i]

end if
end for
return pruning mask

end function



Figure 4. Segmentation results on challenging videos from ViSal without fine-tuning.



Figure 5. Similarity scores of a foreground pixel on a later frame with pixels in the anchor. Left, middle, and right images for each video
illustrate, respectively, the target frame and the sampled foreground pixel (blue cross), the anchor frame, and similarities overlaid on the
anchor frame.


