
Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph
Embedding - Supplementary

Linxiao Yang∗1,2, Ngai-Man Cheung‡1, Jiaying Li1, and Jun Fang2

1Singapore University of Technology and Design (SUTD)
2University of Electronic Science and Technology of China

‡Corresponding author: ngaiman_cheung@sutd.edu.sg

1. Proof of equation (13)
We provide detail to show how to arrive at (13)
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2. Proof of equation (15)
In this part, we provide proof to show that that we can replace q(z, c|xi) with q(z, c|xj) in (14) i.e. the decomposition of
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3. Derivation of equation (19)
We provide detail to show how to arrive at (19) from (11)
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where inequation (a) comes from (13), equation (b) comes from (16), and equation (c) comes from the fact that
∑
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4. Derivation of equation (21)
We provide details to show how L(θ, φ,xi) can be estimated using (21). We note that the equation (26) can be derived

similarly. The equation (21) can be written as
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In the following, we evaluate the terms in (4).

4.1. Evaluate Eqφ(z|xi)[ln pθ(xi|z)]

The term Eqφ(z|xi)[ln pθ(xi|z)] can be estimated using the reparameterization trick, i.e.,
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where z(l)i ∼ N (µ, diag(σ2)), and [µ̃, log σ̃2] = f(xi, φ). L is the number of samples that used in the SGVB estimator. In
our method, we set L = 1 and omit the superscript of zi. Then the term Eqφ(z|xi)[ln pθ(xi|z)] can be estimated as
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where µxi = g(zi; θ).



4.2. Evaluate Eqφ(z|xi)qφ(c|z)[ln p(z|c)]

We note that the term Eqφ(z|xi)qφ(c|z)[ln p(z|c)] can be estimated using the reparameterization trick. But in our paper, we
use an approximation of this term, i.e., we approximate q(c|z) using q(c|z). Then
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Substituting the above equations into (11), we arrive at
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4.3. Evaluate Eqφ(z|xi)qφ(c|z)
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where (15) comes from the reparameterization trick, γik denotes the kth entry of qφ(c|zi), and (17) comes fromEqφ(c|zi) [ck] =
γik.



4.4. Evaluate Eqφ(z|xi)[ln qφ(z|xi)]

We evaluateEqφ(z|xi)[ln qφ(z|xi)]. As mentioned above, qφ(z|xi) is a Gaussian distribution. Then the termEqφ(z|xi)[ln qφ(z|xi)]
can be rewritten as
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5. Details of the Siamese Network
We train a Siamese network to measure the similarity between the data points. We select Nt nearest neighbors for each

datapoint, and group them into Nt pairs. We label these pairs as as positive. We then randomly select Nt pairs of data and
treat them as negative. We then minimize the following contrastive loss

L =

{
‖xi − xj‖22 (xi,xj) is positive pair
max(c− ‖xi − xj‖2, 0)2 (xi,xj) is negative pair

(19)

where c is a predefined parameter. In our experiments, the architecture of the Siamese network is set to same with that of
encoder, i.e., D− 500− 500− 2000− 10. The network is fully connected, and ReLU is used as the activation function. The
parameter c is set to 3. Nt is set to 2, 5, 3, 3 for MNIST, STL-10, Reuters, and HHAR, respectively. The network is trained
using Adam optimizer with the initial learning rate 0.0005. The learning rate decays every 70 epochs with a factor 0.1. The
weight decay in Adam is set to 0.0001

6. JS divergence between two Gaussian
We plot the JS divergence between two Gaussian distribution with varying relative orientation. From the figure, we can

find that the JS divergence is minimized when the two Gaussian aligned with the coordinate.

Figure 1. The JS divergence between two Gaussian distributions with different orientation. The two Gaussian distributions have diagonal
covariance matrix, and the distance between their mean are fixed.

7. Additional Experimental Analysis
We provide the clustering results of GMM with the latent representation learnt using denoising autoencoder (DAE) on

2-D half circles. Fig.2 shows the learnt representations as well as the clustering results. From the figure we see that the
DAE+GMM cannot clusters correctly.



Figure 2. Results of the DAE+GMM on 2D examples with different cluster distance. From left to right: learnt latent features and clustering
result for case of small cluster distance, learnt latent features and clustering result for the case of large cluster distance.

Figure 3. Graphs used in the proposed method on 2D examples. From left to right: graphs for cases of small and large cluster distance,
respectively.

We plot the graphs for the proposed method we used to obtain the results on the 2D examples in Fig.3.
We visualize the latent features learnt by the proposed method trained on MNIST at the different training stages. We

randomly select 1000 datapoints, and compute their latent features using the learnt encoder. The latent features then are
reduced to 2-D using the t-SNE. Fig.4 plots the results using the network before training, after 20 epochs and 100 epochs
training, respectively. From Fig.4, we see that after training, the latent features spread more compactly, and the clusters are
more pure and well-separated.

Figure 4. Visualization of the latent features learnt by the proposed method at different training stages. From left to right: latent features
obtained using the encoder before training (after pretraining), after 20 epochs and after 300 epochs training, respectively

We discuss the time complexity. In short, compared with VaDE, we have additional overhead of graph embedding, which
increases with number of neighbors in the graph. We have measured run time on MNIST for one epoch and show the results
in table 1. From the table we see that with 3 neighbors, our method has only slightly higher run time compared to VaDE (our:
8.5s, VaDE: 6.4s), but accuracy is much improved (our: 97.33, VaDE: 94.82)

Table 1. Clustering accuracy and run time for VaDE and the proposed method with different number of neighbors
VaDE Ns = 1 Ns = 3 Ns = 10 Ns = 20

ACC 94.82 96.98 97.33 97.52 97.58
run time 6.4s 8.7s 8.5s 10.5s 15.5s



8. Images generated by the proposed method
We provides additional images generated by the decoder of our model as well as the learnt variance of the Gaussian

components.

Figure 5. Images generated by the proposed model and estimated variance of the components in GMM


