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1. Details of the Memory Module

To represent the evolving feature space and the current
overall model inference uncertainty, memory update is per-
formed every iteration to accommodate the most recent up-
dates of the network. To ensure the quality of memories, we
only utilize labelled data to update the memory. We have
two types of updates for our Dual-Level Memory (DLM)
module: coarse-grained proposal level memory update and
fine-grained image level memory update. For the former
update, we use proposal-level scores and features to update
the corresponding memory slots, and for the latter update,
we use image-level scores and features.

Specially, assume there are nj proposals/images from
the j-th class with their feature vectors and probabilistic
predictions as {(xi,pi)}

nj

i , the j-th memory slot (kj ,vj)
is cumulatively updated over all the training iterations as
follows: {

kj ← kj − ηOkj
vj ← vj−ηOvj∑C

i=1 vj,i−ηOvj,i

, with (1)

Okj =
∑nj

i=1(kj−xi)

1+nj

Ovj =
∑nj

i=1(vj−pi)

1+nj

(2)

where kj is the key embedding, i.e., the feature represen-
tation of the class j in the feature space, and vj is the
value embedding, i.e., the mutli-class probabilistic predic-
tion w.r.t. class j. η is the learning rate. The value vj
is normalized to ensure its probability distribution nature.
The key and value embeddings are initialized with 0 and a
uniform vector, respectively.

1.1. Assimilation and Accommodation

We use an assimilation-accommodation mechanism [2]
for our semi-supervised detection. Memory Assimilation
computes the memory prediction for each training sample
by key addressing and value reading. This process can be
interpreted as cluster assignments. Memory Accommoda-
tion computes the memory loss to formulate the final semi-

supervised learning objectives. We introduce the details as
follows.

Assimilation: For a proposal or image with the feature
represented as x, and with label j, the memory assimilation
process is essentially computing the memory prediction p̂
by the weighted sum of all value embeddings as follows:

p̂ =

C∑
i=1

w(ki|x)vi, (3)

where w(·) is an assignment function. We can use hard as-
signment if the image/proposal label is known, i.e.,

w(ki|x) =

{
1, if i = j

0, otherwise.
(4)

Or we use distance-based soft assignment for unlabelled im-
ages/proposals, i.e.,

w(ki|x) =
e−β‖x−ki‖2∑
j e
−β‖x−kj‖2

. (5)

Accommodation: Given the network prediction p and
the memory prediction p̂ for a proposal/image, the memory
loss is defined as:

Lm = H(p̂) +DKL(p||p̂), (6)

where H(·) is the entropy and DKL(·) is the Kullback-
Leibler (KL) divergence.

2. Design Choices on Pooling Strategies

mAP50 Feature Maps Score Maps
Coarse-grained 52.9 52.2
Fine-grained 49.2 47.8

Table 1: Shall we pool on feature or score maps?

In this section, we study different options in the network
design. For example, while doing the RoI pooling, should
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we pool on feature maps or score maps? Which global pool-
ing function should we use for aggregating proposal scores
to image level scores? We run experiments on the OpenIm-
ages dataset to search for the best options for these ques-
tions. Note that these experiments are without using the
memory module, thus their results are lower than our final
results.

First, although we can follow the literature and pool fea-
ture maps for the RoI pooling, we also run experiments on
score maps. We see from Table 1 that pooling on feature
maps provides slightly better results than on score maps.

Second, we study different types of global pooling meth-
ods for aggregating the proposal scores to image level
scores in weakly supervised stream. Max, average, sum and
top-k pooling are the options that we investigate. Unfortu-
nately, we cannot get meaningful results with average and
sum pooling. These pooling methods basically treat each
proposal equally thus are hard to tune. We also study the
WSDDN [1] type of pooling (essentially a self-weighted
sum pooling), but cannot get meaningful results neither. We
find out that for large scale weakly-supervised problem, us-
ing max and top-k pooling are much easier to train. Results
are demonstrated in Table 2, Top-5 pooling achieves slightly
better performance than the max pooling.

mAP50 Max Top-5 Average
Coarse-grained 50.8 52.2
Fine-grained 46.1 47.8

Table 2: Global pooling methods for aggregating proposal
scores in weakly supervised stream.

3. Additional Experiments on ImageNet and
VOC-COCO

Though our framework is not designed for these settings,
we show here our method can still outperform [4, 5] and
DOCK [3]. Following [4, 5], we use the first 100 classes (in
alphabetical order) in ImageNet detection set as the fully-
supervised set and the remaining 100 classes as the weakly-
supervised set. Following DOCK, we use the 20 classes
from VOC as the fully-supervised set, and the remaining 60
(80-20) classes from COCO as the the weakly-supervised
set. Results are summarized in Table 3 and 4.

4. Additional Qualitative Results
We show more qualitative results in Fig.1.
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Figure 1: Qualitative Results on ImageNet-11K. Common failure cases include: 1) False classification; 2) Miss detection; 3)
Confusing scenes and objects; and 4) Confusing parts with objects.


