
Supplementary Material for “PointFlow: 3D Point Cloud Generation with
Continuous Normalizing Flows”

Guandao Yang1,2∗, Xun Huang1,2∗, Zekun Hao1,2, Ming-Yu Liu3, Serge Belongie1,2, Bharath Hariharan1

1Cornell University 2Cornell Tech 3NVIDIA

A. Overview
In the appendix, we first describe the detailed hyper-

parameters and model architectures for our experiments in
Section B. We then compare our model with additional
baselines to understand the effect of different model com-
ponents in Section C. Limitations and typical failure cases
are discussed in Section D. Finally, additional visualizations
of latent space t-SNE, interpolations and flow transforma-
tions are presented in Section E, Section F, and Section G
respectively.

B. Training details
In this section, we provide details about our network ar-

chitectures and training hyper-parameters. We will release
the code to reproduce our experiments. Please refer to algo-
rithm 1 for the detailed training procedure.

Encoder. The architecture of our encoder follows that of
Achlioptas et al. [1]. Specifically, we first use 1D Convolu-
tion with filter size 128, 128, 256, and 512 to process each
point independently and then use max pooling to create a
512-dimension feature as done in PointNet [8]. Such a fea-
ture is invariant to the permutation of points due to the max-
pooling. Finally, we apply a three-layer MLP with 256 and
128 hidden dimensions to convert the permutation invariant
feature to a Dz-dimension one. For the unsupervised repre-
sentation learning experiment, we set Dz = 512 following
convention. For all other experiments, Dz is set to 128.

CNF prior. The CNF prior models the distribution
Pψ(z). We follow FFJORD [4]’s released code to use three
concatsquash layers to model the dynamics fψ . A
concatsquash layer is defined as:

CS(x, t) = (Wxx+ bx)σ(Wtt+ bt) + (Wbt+ bbt), (1)

where Wx, bx, Wt, bt, Wb, and bb are all trainable pa-
rameters and σ(·) is the sigmoid function. fψ uses three
concatsquash layers with a hidden dimension 256.
Tanh is used as the non-linearity between layers.

We use a Moving Batch Normalization layer to learn the
scale of each dimension before and after the CNF, following
∗Equal contribution.

FFJORD’s released code [4]. Specifically, Moving Batch
Normalization is defined as

MBN(x) =
x− µ
σ

γ + β, (2)

where γ and β are trainable parameters, Different from
batch normalization proposed by Ioffe and Szegedy [6], µ
and σ are running averages of the batch mean and standard
deviation. MovingBatchNorm is invertible : MBN−1(y) =
y−β
γ σ + µ. Its log determinant is given as:

log det

∣∣∣∣∂MBN(x)

∂x

∣∣∣∣ =∑
i

log |γi| − log |σi|. (3)

CNF decoder. The CNF decoder models the reconstruc-
tion likelihood Pθ(X|z). We extend the concatsquash
layer to condition on the latent vector z:

CCS(x, z, t) = (Wxx+ bx)σ(Wttt+Wtzz + bt)

+ (Wbtt+Wbzz + bbt), (4)

where Wx,Wtt,Wtz,Wbt,Wbz, bt, bb are all learnable pa-
rameters. The CNF decoder uses four conditional
concatsquash layers with a hidden dimension 512 to
model the dynamic gθ. The non-linearity between layers is
Tanh. Similar to the CNF prior model, we also add a Mov-
ing Batch Normalization layer before and after the CNF. In
this case, all 3D points (from different shapes) from a batch
are used to compute the batch statistics.

Hyper-parameters. We use an Adam optimizer with
an initial learning rate 0.002, β1 = 0.9, and β2 = 0.999.
The learning rate decays linearly to 0 starting at the 2000th

epoch and ends at the 4000th epoch. We do not use any
weight decay. We also learn the integration time t1 during
training by back-propogation [2].

C. Additional comparisons
In this section, we compare our model to more baselines

to show the effectiveness of the model design. The first
baseline is Neural Statistician (NS) [3], a state-of-the-art
generative model for sets. We modify its official code for

1

Table 1: Ablation studies. ↑: the higher the better, ↓: the lower the better. The best scores are highlighted in bold. MMD-CD
scores are multiplied by 103; MMD-EMD scores are multiplied by 102; JSDs are multiplied by 102.

Parameters (M)
JSD (↓) MMD (↓) COV (%, ↑) 1-NNA (%, ↓)

Category Model Full Gen CD EMD CD EMD CD EMD

Airplane

NS [3] 2.29 1.00 1.74 0.655 4.51 7.81 4.51 99.61 99.61
VAECNF 1.47 0.92 6.30 0.261 3.35 41.98 46.17 88.64 82.72
WGAN-CNF 1.75 1.06 4.29 0.254 3.23 42.47 48.40 75.80 75.68
PointFlow (ours) 1.61 1.06 4.92 0.217 3.24 46.91 48.40 75.68 75.06

Training set - - 6.61 0.226 3.08 42.72 49.14 70.62 67.53

generating 2D spatial coordinates of MNIST digits to make
it work with 3D point cloud coordinates. We use the same
encoder architecture as our model, and use the VAE decoder
provided by authors with the input dimension changed from
2 to 3. It differs from our model mainly in 1) using VAEs in-
stead of CNFs to model the reconstruction likelihood, and
2) using a simple Gaussian prior instead of a flow-based
one. The second baseline is VAECNF, where we use the
CNF to model the reconstruction likelihood but not prior.
Specifically, the VAECNF optimizes ELBO in the follow-
ing form:

L(X;φ, θ) =
∑
x∈X

(
logP (G−1

θ (x; z))−
∫ t1

t0

Tr

(
∂gθ
∂y(t)

)
dt

)
+DKL(Qφ(z|X)||P (z)) , (5)

where P (z) is a standard GaussianN (0, I) and DKL is the
KL-divergence. As another baseline, we follow l-GAN [1]
to train a WGAN [5] in the latent space of our pretrained
auto-encoder. Both the discriminator and the generator are
MLP with batch normalization between layers. The gen-
erator has three layers with hidden dimensions 256. The
discriminator has three layers with hidden dimensions 512.

The results are presented in Table 1. Neural Statisti-
cian [3] is able to learn the marginal point distribution but
fails to learn the correct shape distribution, as it obtains the
best marginal JSD but very poor scores according to metrics
that measure similarities between shape distributions. Also,
using a flexible prior parameterized by a CNF (PointFlow)
is better than using a simple Gaussian prior (VAECNF) or
a prior learned with a latent GAN (WGAN-CNF) that re-
quires two-stage training.

D. Limitation and failure cases

In this section, we discuss the limitation of our model
and present visualizations of difficult cases where our model
fails. As mentioned in FFJORD [4], each integration re-
quires evaluating the neural networks modeling the dynam-
ics multiple times. The number of function evaluations
tends to increase as the training proceeds since the dynamic
becomes more complex and more function evaluations are

Algorithm 1 PointFlow training.

Require: Point cloud encoder Qφ; CNFs Gθ and Fψ ,
whose dynamics are defined by gθ and fψ , respectively;
Integration time interval [t0, t1]; Learning rate α; Total
number of training iterations T ; Data samples Xt.
for t = 1, 2, . . . , T do do
µ, σ ← Qφ(Xt) {d is the dimension of µ}
Lent = d

2 (1 + ln (2π)) +
∑d
i=1 lnσi

z ← ε� σ + µ {Reparameterization.}
w ← F−1ψ (z)

Lprior = logN (w; 0, I)−
∫ t1
t0

Tr
(
∂fψ(w(t))
∂w(t)

)
dt

L← 0
for xi ∈ Xt do do
yi ← G−1θ (xi; z)

Li ← logN (yi; 0, I)−
∫ t1
t0

Tr
(
∂gθ(yi(t))
∂yi(t)

)
dt

L← L+ Li
end for
Lrecon = L

|Xt|
L = Lrecon + Lprior + Lent
φ, ψ, θ ← Adam(L, φ, ψ, θ)

end for
return Qφ, Gθ, Fψ

needed to achieve the same numerical precision. This is-
sue limits our model size and makes the convergence slow.
Grathwohl et al. indicate that using regularization such as
weight decay could alleviate such an issue, but we em-
pirically find that using regularization tends to hurt per-
formance. Future advances in invertible models like CNF
might help improve this issue. Typical failure case appears
when reconstructing or generating the rare shape or shapes
with many thin structures as presented in Figure 1.

E. Latent space visualizations
We provide visualization of the sampled latent vectors

z ∈ R128 in Figure 2. We sample 1000 latent vectors and
run t-SNE [7] to visualize these latent vectors in 2D. Shapes
with similar styles are close in the latent space.

Figure 1: Difficult cases for our model. Rare shapes or
shapes that contain many thin structures are usually hard
to reconstruct in high quality.

Figure 2: Visualization of latent space.

F. Interpolation

In this section, we present interpolation between two dif-
ferent shapes using our model. For two shapes X1 and X2,
we first compute the mean of the posterior distribution using
Qθ(z|X). Let µ1 and µ2 be the means of the posterior dis-
tribution for X1 and X2 respectively. We use µ1 and µ2 as
the latent representation for these two shapes. We then use
the inverse prior flow F−1ψ to transform µ1 and µ2 back to
the prior space. Let w1 = F−1ψ (µ1) and w2 = F−1ψ (µ2) be
the corresponding vectors for µ1 and µ2 in the prior space.
We use spherical interpolation between w1 and w2 to re-
trieve a series of vectors wi. For each wi, we use the CNF
prior Fψ and the CNF decoder Gθ to generate the corre-
sponding shape Xi. Figure 3 contains examples of the in-
terpolation.

G. More flow transformation

Figure 4 presents more examples of flow transformations
from the Gaussian prior to different shapes.

References
[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning representations and generative
models for 3d point clouds. In ICML, 2018. 1, 2

[2] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and
David K Duvenaud. Neural ordinary differential equations.
In NeurIPS, 2018. 1

[3] Harrison A Edwards and Amos J. Storkey. Towards a neural
statistician. In ICLR, 2017. 1, 2

[4] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya
Sutskever, and David Duvenaud. Ffjord: Free-form contin-
uous dynamics for scalable reversible generative models. In
ICLR, 2019. 1, 2

[5] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron C Courville. Improved training of
wasserstein gans. In NeurIPS, 2017. 2

[6] Sergey Ioffe and Christian Szegedy. Batch normalization: Ac-
celerating deep network training by reducing internal covari-
ate shift. arXiv preprint arXiv:1502.03167, 2015. 1

[7] Laurens van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
9(Nov):2579–2605, 2008. 2

[8] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification and
segmentation. In CVPR, 2017. 1

Figure 3: Feature space interpolation. The left-most and the right-most shapes are sampled from scratch. The shapes in
between are generated by interpolating the two shapes in the prior space.

Figure 4: Additional visualizations on the process of transforming prior to point cloud.

