

Figure 11: Two epipolar lines are induced by an epipolar plane, which can be parametrized by the rotation θ about the baseline where C_i and C_j are the camera optical centers.

A. Proof of Theorem 1

 $Q_i(\theta) = Q_{i \to i}(\theta)$ implies:

Proof. A point in an image corresponds to a 3D ray L emitted from the camera optical center C (i.e., inverse projection), and λ corresponds to the depth. **K** is the intrinsic parameter. The geometric consistency, or zero reprojection error, is equivalent to proving $\mathbf{L}_{i}^{*}, \mathbf{L}_{i}^{*} \in \mathbf{\Pi}$ where $\mathbf{\Pi}$ is an epipolar plane rotating about the camera baseline $\overline{\mathbf{C}_i \mathbf{C}_j}$ as shown in Figure 11, and \mathbf{L}_i^* and \mathbf{L}_j^* are the 3D rays produced by the inverse projection of correspondences $\mathbf{x}_i^* \leftrightarrow \mathbf{x}_i^*$, respectively, i.e., $\mathbf{L}_{i}^{*} = \mathbf{C}_{i} + \lambda \mathbf{R}_{i}^{\mathsf{T}} \mathbf{K}^{-1} \widetilde{\mathbf{x}}_{i}^{*}$. The correspondence from the keypoint distributions are:

$$\mathbf{x}_i^* = \operatorname*{argmax}_{\mathbf{x}} P_i(\mathbf{x}) \tag{12}$$

$$\mathbf{x}_j^* = \operatorname*{argmax}_{\mathbf{x}} P_j(\mathbf{x}), \tag{1}$$

$$\theta^{*} = \underset{\theta}{\operatorname{argmax}} \sup_{\mathbf{x} \in \mathbf{l}_{i}(\theta)} P_{i}(\mathbf{x})$$

=
$$\underset{\theta}{\operatorname{argmax}} \sup_{\mathbf{x} \in \mathbf{l}_{i}(\theta)} P_{j \to i}(\mathbf{x})$$

=
$$\underset{\theta}{\operatorname{argmax}} \sup_{\mathbf{x} \in \mathbf{l}_{j}(\theta)} P_{j}(\mathbf{x}).$$
(14)

This indicates the correspondence lies in epipolar lines induced by the same θ^* , i.e., $\mathbf{x}_i^* \in \mathbf{l}_i(\theta^*)$ and $\mathbf{x}_j^* \in \mathbf{l}_j(\theta^*)$. Since $\mathbf{l}_i(\theta^*) = \mathbf{F} \widetilde{\mathbf{x}}_i^*, \mathbf{l}_i(\theta^*)$ and $\mathbf{l}_i(\theta^*)$ are the corresponding epipolar lines. Therefore, they are in the same epipolar plane, and the reprojection error is zero.

fication

We warp the keypoint distribution using stereo rectification. This requires a composite of transformations because the rectification is defined in the full original image. The

transformation can be written as:

Supplementary Material

$$\overline{^{h}}\mathbf{H}_{h} = \left(\overline{^{h}}\mathbf{H}_{\overline{c}}\right)\left(\overline{^{c}}\mathbf{H}_{\overline{b}}\right)\mathbf{H}_{r}\left(^{c}\mathbf{H}_{b}\right)^{-1}\left(^{h}\mathbf{H}_{c}\right)^{-1}.$$
 (15)

The sequence of transformations takes a keypoint distribution of the network output P to the rectified keypoint distribution \overline{P} : heatmap \rightarrow cropped image \rightarrow original image \rightarrow rectified image \rightarrow rectified cropped image \rightarrow rectified heatmap.

Given an image \mathcal{I} , we crop the image based on the bounding box as shown in Figure 12: the left-top corner is (u_x, u_y) and the height is h_b . The transformation from the image to the bounding box is:

$${}^{c}\mathbf{H}_{b} = \begin{bmatrix} s & 0 & w_{x} - su_{x} \\ 0 & s & w_{y} - su_{y} \\ 0 & 0 & 1 \end{bmatrix}$$
(16)

where $s = h_c/h_b$, and (w_x, w_y) is the offset of the cropped image. It corrects the aspect ratio factor. $h_c = 364$ is the height of the cropped image, which is the input to the network. The output resolution (heatmap) is often different from the input, $s_h = h_h/h_c \neq 1$, where h_h is the height of the heatmap. The transformation from the cropped image to the heatmap is:

$${}^{h}\mathbf{H}_{c} = \begin{bmatrix} s_{h} & 0 & 0\\ 0 & s_{h} & 0\\ 0 & 0 & 1 \end{bmatrix}$$
(17)

The rectified transformations $(\overline{h}\mathbf{H}_{\overline{c}})$ and $(\overline{c}\mathbf{H}_{\overline{b}})$ can be de-2) fined in a similar way.

The rectification homography can be computed as $\mathbf{H}_r =$ 3) $\mathbf{KR}_n \mathbf{R}^\mathsf{T} \mathbf{K}^{-1}$ where \mathbf{K} and $\mathbf{R} \in SO(3)$ are the intrinsic parameter and 3D rotation matrix and \mathbf{R}_n is the rectified rotation of which x-axis is aligned with the epipole, i.e.,

$$\mathbf{r}_{x} = \frac{\mathbf{C}_{j} - \mathbf{C}_{i}}{\|\mathbf{C}_{j} - \mathbf{C}_{i}\|}$$
 where $\mathbf{R}_{n} = \begin{bmatrix} \mathbf{r}_{x}^{\perp} \\ \mathbf{r}_{y}^{\top} \\ \mathbf{r}_{z}^{\top} \end{bmatrix}$ and other axes can

be computed by the Gram-Schmidt process.

The fundamental matrix between two rectified keypoint distributions P_i and P_j can be written as:

$$\mathbf{F} = \mathbf{K}_{j}^{-\mathsf{T}} \begin{bmatrix} 1\\0\\0 \end{bmatrix}_{\times} \mathbf{K}_{i}^{-1}$$
$$= \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & -1/f_{y}^{j}\\ 0 & 1/f_{y}^{i} & p_{y}^{j}/f_{y}^{j} - p_{y}^{i}/f_{y}^{i} \end{bmatrix}$$
(18)

B. Cropped Image Correction and Stereo Recti- where $[\cdot]_{\times}$ is the skew symmetric representation of cross product. and

$$\mathbf{K}_{i} = \begin{bmatrix} f_{x}^{i} & 0 & p_{x}^{i} \\ 0 & f_{y}^{i} & p_{y}^{i} \\ 0 & 0 & 1 \end{bmatrix}.$$
 (19)

Figure 12: A cropped image is an input to the network where the output is the keypoint distribution. To rectify the keypoint distribution (heatmap), a series of image transformations need to be applied.

Subjects	P	$ \mathcal{D}_L $	$ \mathcal{D}_U $	$ \mathcal{D}_L / \mathcal{D}_U $	C	FPS	Camera type
Monkey	13	85	63,000	0.13%	35	60	GoPro 5
Humans	14	30	20,700	0.14%	69	30	FLIR BlackFly S
Dog I	12	100	138,000	0.07%	69	30	FLIR BlackFly S
Dog II	12	75	103,500	0.07%	69	30	FLIR BlackFly S
Dog III	12	80	110,400	0.07%	69	30	FLIR BlackFly S
Dog IV	12	75	103,500	0.07%	69	30	FLIR BlackFly S

Table 3: Summary of multi-camera dataset where P is the number of keypoints, C is the number of cameras, $|\mathcal{D}_L|$ is the number of labeled data, and $|\mathcal{D}_U|$ is the number of unlabeled data.

This allows us to derive the re-scaling factor of a and b in Equation (7):

$$a = \frac{s^i f_y^i}{s^j f_y^j} \tag{20}$$

$$b = s_h s^i \left(\left(\overline{u}_y^j - p_y^j \right) \frac{f_y^i}{f_y^j} + p_y^i - \overline{u}_y^i \right)$$
(21)

where \overline{u}_{y}^{i} is the bounding box offset of the rectified coordinate.

C. Evaluation Dataset

All cameras are synchronized and calibrated using structure from motion [18]. The input of most pose detector models except for [8] is a cropped image containing a subject, which requires specifying a bounding box. We use a kernelized correlation filter [20] to reliably track a bounding box using multiview image streams given initialized 3D bounding box from the labeled data.