
In Figure 3 of the original paper, the merge and magnification module is composed of 2 convolutional layers and 2
sub-pixel magnification (SPM) layers [6]. Taking a feature map of H ×W × 64 as input, for instance, it becomes
H ×W × 48 after the first convolutional layer. Then, a SPM layer reshapes it as 2H × 2W × 12. Then, this feature
map is further passed through the second convolutional layer and SPM layer, whose shape becomes 4H × 4W × 3 (“3”
denotes RGB color channels) in the end. This way, low-resolution (LR) feature map is magnified by 4 times to become
a high-resolution (HR) one.

As has been discussed in Section 4.2 of the original paper, for models involving motion estimation and motion
compensation (ME&MC) [1, 7], the total loss function can be described as follows:

L = LSR + λLME , (1)

where LSR is adopted for super-resolution (SR) network and has been described in Section 4.1 of the original paper,
LME is for the motion estimation subnetwork, and λ is empirically set as 0.01.

We first explain the function of the motion estimation module:

Fi→j = (ui→j , vi→j) =ME(Ii, Ij ; θME), (2)

where Fi→j = (ui→j , vi→j) denotes the optical flow field generated from input frame Ii to Ij , ME(·) represents the
operator for calculating optical flow, and θME stands for the corresponding parameter. The calculated optical flow
Fi→j is later adopted for motion compensation.

We now give the specific formulation of LME [7]:

LME =

T∑
i=−T

∥∥∥ILi − ĨL0→i

∥∥∥
1
+ α ‖5Fi→0‖1 . (3)

where ILi is ith LR frame, ĨL0→i represents the backward warped IL0 according to optical flow Fi→0,5Fi→0 denotes
the total variation on (u, v) of Fi→0 as described in Equation (2), and α is also empirically set as 0.01.

Besides, as illustrated in Figure 1, we give more visual results of our model PFNL and other state-of-the-art methods
like VESPCN [1], RVSR-LTD [4], MCResNet [3], DRVSR [7], FRVSR [5] and DUF_52L [2]. Except for LR frames
downsampled from HR videos (shown in Figure 1(a) and Figure 1(b)), we also conduct experiments on real world
videos without corresponding HR videos (taken by ourselves and shown in Figure 1(c)). We also provide source files of
these images and corresponding videos in the zipped file.
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(a) This frame is from clap

(b) This frame is from lake

(c) This frame is from a real LR video rather than downsampled from an HR video.

Figure 1: Visual results of different video SR methods, for 4× upscaling.
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