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1. Frame-based signal reconstruction

Our proposed model WCT2 is inspired by the recent theoretical advancement of frame-based signal reconstruction ap-

proaches [9, 10]. To make the paper self-contained, we provide a brief introduction to the frame theory (Section 1.1), tightness

of Haar wavelets (Section 1.2) and our theoretical motivation (Section 1.3).

1.1. Perfect reconstruction condition

Consider an analysis operator Φ =
[

φ1 · · · φm
]

∈ R
n×m, where {φk}mk=1

is a family of functions in a Hilbert space

H . Then, {φk}mk=1
is called a frame if it satisfies the following inequality [2]:

α‖f‖2≤ ‖Φ⊤f‖2≤ β‖f‖2, ∀f ∈ H, (1)

where f ∈ R
n is an input signal and α, β > 0 are called the frame bounds.

The original signal f can be exactly recovered from the frame coefficient z = Φf when there is the dual frame Φ̃ (i.e.,

synthesis operator) satisfying the perfect reconstruction (PR) condition: Φ̃Φ⊤ = I , since f = Φ̃z = Φ̃Φ⊤f = f . Here, we

call such frame tight (i.e., α = β in (1)) which is equivalent to Φ̃ = Φ or ΦΦ⊤ = I . Note that a tight frame does not amplify

the power of the input and thus it has the minimum noise amplification factor. To achieve the best reconstruction performance,

frame bases should satisfy another property, called energy compaction. This is particularly important to parametric models,

which have to adaptively deal with varying amounts of information with a fixed number of parameters, e.g., deep neural

networks (DNNs). For example, singular value decomposition (SVD) provides both tight and energy compact bases given an

arbitrary signal. However, SVD is data-dependent, which makes it hard to use for a large dataset.

1.2. Wavelet frames

Wavelets are known to compactly represent signals while maintaining important information such as edges, thus resulting

in a good energy compaction [1]. Therefore, by using a tight wavelet filter-bank, we can improve the reconstruction perfor-

mance of encoder-decoder type of networks with minimal noise amplification. Specifically, the non-local basis ΦT is now

composed of a filter bank:

Φ = [T1 · · ·TL], (2)

where Tk denotes the k-th subband operator and the filter bank is tight, i.e.

ΦΦT =

L
∑

k=1

TkT
T
k = I. (3)

In this paper, we use Haar wavelets which is one of the simplest tight filter bank frames with low and high sub-band

decomposition. Here, T1 ∈ R
n

2
×n is the low-pass subband. This is equivalent to the average pooling:
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Then, T2 is the high pass filtering given by
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(5)

and we can easily see that

T1T
T
1
+ T2T

T
2

= I, (6)

so the Haar wavelet frame is tight.

1.3. Theoretical motivation

In the perspective of the frame-based signal reconstruction, the commonly used encoder-decoder convolution structure of

deep neural networks (DNNs), such as U-net [8], can be interpreted as the data-driven way of learning the local bases Ψ
(e.g., convolution filters) with hand-crafted global bases Φ (e.g., max-pooling) [9]. Recently, Ye et al. [9] interpreted training

DNNs as finding a multi-layer realization of the convolution framelets [10]:

Z = ΦT (f ⊛Ψ) (7)

f =
(

Φ̃Z
)

⊛ Ψ̃, (8)

where Φ = [φ1, · · · , φn] and Φ̃ = [φ̃1, · · · , φ̃n] ∈ R
n×n (resp. Ψ = [ψ1, · · · , ψq] and Ψ̃ = [ψ̃1, · · · , ψ̃q] ∈ R

d×q) are frames

and their duals. Here, ⊛ stands for the convolution operation.

Therefore, the convolutional layers of the encoder learns the signal representation with a global pooling operation. We

refer to Φ as global bases because it observes the entire image dimension n while Ψ learns local features from the data by

d× d convolution kernels of q channels. When these frames satisfy the PR condition:

Φ̃Φ⊤ = In×n, ΨΨ̃⊤ = Id×d, (9)

the input signal f can be exactly recovered from the learned representations. Note that the encoder-decoder architectures

of WCT [5] and PhotoWCT [6] cannot satisfy the perfect reconstruction condition because of the max-pooling, which does

not have its exact inverse (i.e., not a frame). On the other hand, our model WCT2 can fully exploit the information from

the encoder due to the favorable property of the wavelet decomposition and reconstruction, i.e., Haar wavelet pooling and

unpooling.

1.4. Proposed network architecture
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Figure 1: The proposed module using Haar wavelet pooling and unpooling. A pair of encoder and decoder at same scale are

shown. WCT is performed on the output of VGG convX 1 layer followed by subsequent VGG layers and wavelet pooling.

Only the low component passes to the next layer and the high frequency components are directly skipped to the corresponding

decoding layer. At the decoder, the components are aggregated by the wavelet unpooling.
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Figure 2: Overview of the proposed progressive stylization. For the encoder, we perform WCT on the output of convX_1

layer and skip connections. For the decoder, we apply WCT on the output of convX_2 layer, which is optional.

1.5. Differences to PhotoWCT and Wavelet corrected transfer based on AdaIN (WCT­AdaIN)

Our method shares the motivation with PhotoWCT but the way we posit the problem and reach to its solution is funda-

mentally different from PhotoWCT: i) We showed that the reason why PhotoWCT fails in preserving spatial information is

because pooling and unpooling operations cannot satisfy the frame condition ii) Based on this theoretical analysis, our

model architecture is specifically designed to perfectly preserve spatial structure, which is proved effective in theory

and practice. This removes the necessity of post-processing, thus making our model far more practical and powerful than

the previous methods. iii) The wavelet corrected model is by no means limited to a specific stylization method. It can serve

as a general architecture for photorealistic style transfer, which is compatible with various methods, e.g., AdaIN (Figure

2 (c)). Currently, our method (WCT2) can process 1k resolution image in 4.7 seconds and this can be accelerated further (∼1

second) by employing adaptive instance normalization (AdaIN) instead of time-consuming SVD procedure.

(a) Inputs (b) PhotoWCT (c) Ours (AdaIN) (d) Ours (WCT)

Figure 3: Photorealistic style transfer results of (a) input pairs using (b) PhotoWCT, (c) Ours (AdaIN) and (d) Ours (WCT).

(c) is the results using our model architecture combined with AdaIN as the stylization method, and (d) is WCT2 (proposed).

1.6. Qualitative comparison with artistic style transfer results

We compare our proposed WCT2 with popular artistic style transfer methods including NeuralStyle [3], AdaIN [4] and

WCT [5] in Figure 4. To apply semantic segmentation map to the artistic style transfer methods, we followed the spatial con-

trol techniques proposed by the authors [7, 4, 5] respectively. In the figure, artistic style transfer methods generate undesired

distortions and artifacts and often fail to maintain the structural information despite the spatial control with segmentation

maps. In comparison, because of the proposed wavelet corrected transfer, our proposed WCT2 prevents unrealistic artifacts

and preserve the structure information such as edges.

1.7. Additional Qualitative comparison with photorealistic style transfer

Additional qualitative results using WCT2 and its variants are shown in Figure 5, Figure 6 and Figure 7. The video

stylization results can be found in one of the other supplementary materials.



(a) Input (b) NeuralStyle [3] (c) AdaIN [4] (d) WCT [5] (e) Ours (WCT2)

Figure 4: Qualitative comparison with artistic style transfer results. Given (a) an input pair (top: content, bottom: style), we

compare the results of (b) NeuralStyle [3], (c) AdaIN [4] (d) WCT [5] and (e) ours (WCT2).



(a) Input (b) DPST [7] (c) PhotoWCT [6] (d) PhotoWCT (full) [6] (e) Ours (WCT2)

Figure 5: Photorealistic style transfer results. Given (a) an input pair (top: content, bottom: style), we compare the results of

(b) deep photo style transfer (DPST) [7], (c) and (d) PhotoWCT [6] and (e) ours (WCT2). (c) is the results of PhotoWCT

without any post-processing and (d) shows the results after applying two post-processing steps proposed by the authors [6].



(a) Input (b) DPST [7] (c) PhotoWCT [6] (d) PhotoWCT (full) [6] (e) Ours (WCT2)

Figure 6: Photorealistic style transfer results. Given (a) an input pair (top: content, bottom: style), we compare the results of

(b) deep photo style transfer (DPST) [7], (c) and (d) PhotoWCT [6] and (e) ours (WCT2). (c) is the results of PhotoWCT

without any post-processing and (d) shows the results after applying two post-processing steps proposed by the authors [6].



(a) Input (b) WCT2 (c) WCT2 (sum) [6] (d) WCT2 (+multi-level) [6] (e) WCT2 (+decoder)

Figure 7: Photorealistic style transfer results. Given (a) an input pair (top: content, bottom: style), we compare the results of

WCT2 and its variants, i.e., (b) WCT2, (c) WCT2 (sum) (d) WCT2 (+multi-level) and (e) WCT2 (+decoder).
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