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1. Experimental Results

In our main paper, we provided experimental results for a
number of vision-related inverse problems. This supplement
provides additional details on the formulations used, as well
as more extensive visual results for the experiments.

1.1. Disparity Super-resolution

For our disparity super-resolution experiment, we use the
dataset from [1], which is a subset of the Middlebury sterco
dataset. We show visualizations of our 16x super-resolution
disparity maps in Figure 4.

1.2. Optical Flow Estimation

In our experiments, we use the color-gradient constancy
model [2] instead of the brightness-constancy one [3]. In all
cases, one can express the optical flow data fidelity term as

d(u) = [H(u —uy) +z,3 (S1)

see (27) in our main paper. The color-constancy model gives
us

Zf fo zf’
H= |2 Z{|, z, = |z{ (S2)
v/l fo zP

in which Zf’_’f B denotes the z- and the y-derivatives of the
target image in the R, G and B components, and zf"G’B are
the difference of the reference image from the target one, in
the R, G and B image components.

The gradient-constancy model on the other hand gives us

the derivative data

o= l: T ny:| : z, = |:th:| (83)
Zyw Zyy Zyt
inwhichZ,,,Z,, and Z,,, are the second-order derivatives
of the target image, and z,, and z,, are the difference of the
first-order differences of the reference image from the target
ones. When the gradient constancy model is applied on each
of the color channels, we obtain
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in which we define the sub-matrices of H and z, similarly to
before.

Revaud et al. [4] use a weighted combination of two data
terms d(u) based on (S2) and (S4). This combination can be
understood as forming new H and z, by stacking the ones in
(S2) and (S4). When the two data terms are combined using
equal weights, the inverse covariance matrix H*H becomes

and the transformed signal is
Z,.z
t _ Z sk Fxt
Hiz =[5, (S6)

cf. (27) in our main paper. In (S5)—(S6), the summations are
over the three color channels for each of the Oth, and the 1st
partial derivatives of the image. Figure 1 visualizes our flow
estimates.

1.3. Image Deblurring

Figure 2 provides crops of the deblurred images from the
the Kodak dataset [2], produced by different algorithms. We
optimize the algorithm parameters for the different methods
(Wiener, L2, and TV) via grid search. The Wiener filter uses
a uniform image power spectrum model. Note the use of the
bilateral filter is not optimal for de-noising as pointed out by
Buades ef al. [5], who demonstrate the advantages of patch-
based filtering (nonlocal means denoising) over pixel-based
filtering (bilateral filter). Our deblurring results are based on
the bilateral filter, but one is free to use the non-local means
filter (or any other filter) for the de-noising operator A.
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Figure 1: Optical flow (top rows) and the corresponding flow error (bottom rows) produced using the geodesic and the bilateral variants of

our method. Whiter pixels correspond to smaller flow vectors.
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Figure 2: Crops of images from the Kodak dataset when the B-spline blur kernel (n = 8) is used. Our method exhibits less ringing compared
to the Wiener filter and the L2-regularization methods, and has less staircasing artifacts than the L1 (TV) method.
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Figure 4: The 16x super-resolution disparity maps produced using the geodesic and the bilateral variants of our method for the 1088 x 1376
scenes Art, Books, and Mdbius used in [1]. Best viewed online by zooming in.

2 2

1 1
0.5 E 0.5
I
0 : 0
0 /2 T

Figure 3. The frequency response (C + )\E)*l can be expressed as
a sum of low-pass response A and an all-pass one I only when the
response (C' + AL)~! is low-pass-like (left). Shown for A = 1.

2. Possible Limitations

In Section 4 of our paper, we discussed that (14a) is valid
only when (14a) matrix (C + AL) ! has a low-pass spectral
response. We show this in Figure 4 (left) for the case where
A =1land C = L Since C + AL is Sinkhorn-normalized, it
has a high-pass spectral response I + AL, ranging from 1 to
2. As a consequence, the inverse filter response (I + AL)~!
ranges from 1 down to 0.5. We can approximate such a filter
response as a sum of low-pass and all-pass responses. In our

context, an approximation of u®** = (C + AL) ! Cz can be
obtained using a convex combination of Cz and a low-pass-
filtered version A Cz of it. On the other hand, if I + AL is a
low-pass response. In this case, the inverse response (shown
in Figure 4, right) is high-pass, and the solution u°?* cannot
be approximated as a convex combination of Cz and a low-
pass-filtered version of it. In practice, we can still use (14b)
to solve the transformed problem.
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