
Appendix
A. Detailed Comparison with Other Works.

In Section 4.4 and Section 4.5 of our main paper, we
provide comparison of the overall performance (mean IoU)
of the models, specifically comparison with other domain
generalization works from GTA to Cityscapes, and with
other domain adaptation works from GTA to Cityscapes as
well as from SYNTHIA to Cityscapes. Here, we provide
more detailed comparison of the class-wise accuracies in
Table 7, Table 8, and Table 9. From the detailed tables,
we can see that our method provides better performance in
many classes and outperforms the state-of-the-art methods
in terms of mIoU under both domain generalization and do-
main adaptation, which shows the efficacy and superiority
of our method.

B. Additional Experiments on auxiliary do-
mains and color augmentation.

Two more experiments are conducted with FCN8s-
VGG16 in this section. First, we re-run our approach with
15 real-world styles from the BDD dataset, including dif-
ferent weather conditions, time of day (TOD), etc. Then,
we replace the style transfer step with 15 color augmenta-
tions 1, varying the hue, saturation, grayscale, contrast, etc.
These changes preserve the semantics of the objects.

Table 6 shows the new results (last two rows) along with
those reported in the main paper. “Random” stands for the
styles randomly selected from ImageNet and Artworks, and
“Semantics” are the styles of the Cityscapes classes (e.g.,
Car, Road, etc.). The results are close to each other except
that the color augmentation is a little worse than the others.
The pyramid consistency is effective for all the test cases.

Table 6. Adaptation from GTA with different style sets. We report
results (mIoU%) both without / with the pyramid consistency.

Style Set Semantics
Safe? Cityscapes Mapillary

Random 7 34.64 / 36.11 31.64 / 32.25
Semantics 7 34.84 / 35.62 31.29 / 32.18
Weather-TOD 7 34.51 / 35.89 31.24 / 32.18
Color Change 3 33.56 / 34.52 30.27 / 32.06

C. More Discussion.
Table 6 shows that the color augmentation performs a

little worse than the style transfers probably for two reasons.
One is that it does not bring to the synthetic images any
appearances of the real images by design. The other is that
it randomizes the images only by color (almost uniformly)
and no texture. Learning an optimal non-uniform color shift
policy is another future direction to explore.

1https://github.com/aleju/imgaug

Table 6 shows that different style sets, including the real
styles (i.e. weather) suggested by R3, lead to similar results.
Together with Figure 4 in the paper, we find that “how many
domains” influences the results more than “what domains”.

https://github.com/aleju/imgaug


Table 7. Class-wise Performance comparison on Domain Generalization from GTA to Cityscapes with ResNet-50 base network.
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ResNet-50

NonAdapt [34]
7 7

– – – – – – – – – – – – – – – – – – – 22.17
IBN-Net [34] – – – – – – – – – – – – – – – – – – – 29.64
NonAdapt

7 7
84.5 12.3 75.4 19.2 9.1 18.7 19.2 7.5 81.6 30.9 73.8 42.7 8.9 76.4 17.2 27.8 1.8 8.6 1.2 32.45

Ours 90.1 21.6 79.4 25.6 18.2 22.6 26.4 16.5 82.9 34.3 77.1 46.1 13.5 78.3 24.4 29.1 3.6 13.4 7.8 37.42

Table 8. Class-wise Performance comparison from GTA to Cityscapes with VGG base network. All the best accuracies with respect to
VGG-16 base network are in bold.
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VGG19
NonAdapt [56]

3 3
18.1 6.8 64.1 7.3 8.7 21.0 14.9 16.8 45.9 2.4 64.4 41.6 17.5 55.3 8.4 5.0 6.9 4.3 13.8 22.3

Curriculum [56] 74.9 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 16.6 28.9
CGAN [20] 3 3 89.2 49.0 70.7 13.5 10.9 38.5 29.4 33.7 77.9 37.6 65.8 75.1 32.4 77.8 39.2 45.2 0.0 25.5 35.4 44.5

VGG16

NonAdapt [19]
3 3

31.9 18.9 47.7 7.4 3.1 16.0 10.4 1.0 76.5 13.0 58.9 36.0 1.0 67.1 9.5 3.7 0.0 0.0 0.0 21.1
FCNs Wld [19] 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1
NonAdapt [41]

3 3
73.5 21.3 72.3 18.9 14.3 12.5 15.1 5.3 77.2 17.4 64.3 43.7 12.8 75.4 24.8 7.8 0.0 4.9 1.8 29.6

LSD [41] 88.0 30.5 78.6 25.2 23.5 16.7 23.5 11.6 78.7 27.2 71.9 51.3 19.5 80.4 19.8 18.3 0.9 20.8 18.4 37.1
NonAdapt [3]

3 3
29.8 16.0 56.6 9.2 17.3 13.5 13.6 9.8 74.9 6.7 54.3 41.9 2.9 45.0 3.3 13.1 1.3 6.8 0.0 21.9

ROAD [3] 85.4 31.2 78.6 27.9 22.2 21.9 23.7 11.4 80.7 29.3 68.9 48.5 14.1 78.0 19.1 23.8 9.4 8.3 0.0 35.9
NonAdapt [18]

3 3
26.0 14.9 65.1 5.5 12.9 8.9 6.0 2.5 70.0 2.9 47.0 24.5 0.0 40.0 12.1 1.5 0.0 0.0 0.0 17.9

CyCADA [18] 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 31.3 60.7 50.5 9.0 76.9 17.1 28.2 4.5 9.8 0.0 35.4
NonAdapt [40]

3 3
25.9 10.9 50.5 3.3 12.2 25.4 28.6 13 78.3 7.3 63.9 52.1 7.9 66.3 5.2 7.8 0.9 13.7 0.7 24.9

MCD [40] 86.4 8.5 76.1 18.6 9.7 14.9 7.8 0.6 82.8 32.7 71.4 25.2 1.1 76.3 16.1 17.1 1.4 0.2 0.0 28.8
I2I [32] 3 3 85.3 38.0 71.3 18.6 16 18.7 12 4.5 72 43.4 63.7 43.1 3.3 76.7 14.4 12.8 0.3 9.8 0.6 31.8
NonAdapt [62]

3 3
64.0 22.1 68.6 13.3 8.7 19.9 15.5 5.9 74.9 13.4 37.0 37.7 10.3 48.2 6.1 1.2 1.8 10.8 2.9 24.3

CBST-SP [62] 90.4 50.8 72.0 18.3 9.5 27.2 28.6 14.1 82.4 25.1 70.8 42.6 14.5 76.9 5.9 12.5 1.2 14.0 28.6 36.1
NonAdapt [52]

3 3
72.5 25.1 71.2 6.6 13.4 12.3 11.0 4.7 76.1 16.4 67.7 43.1 8.0 70.4 11.3 4.8 0.0 13.9 0.4 27.8

DCAN [52] 82.3 26.7 77.4 23.7 20.5 20.4 30.3 15.9 80.9 25.4 69.5 52.6 11.1 79.6 24.9 21.2 1.3 17.0 6.7 36.2
NonAdapt [60]

3 3
– – – – – – – – – – – – – – – – – – – 30.0

PTP [60] – – – – – – – – – – – – – – – – – – – 38.1
AdaptSeg [50] 3 3 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 35.0
NonAdapt [21]

3 3
– – – – – – – – – – – – – – – – – – – 18.8

DAM [21] – – – – – – – – – – – – – – – – – – – 32.6
NonAdapt

7 3
68.4 24.7 68.9 18.1 15.2 18.1 16.7 9.6 78.4 18.3 65.7 43.6 12.3 69.1 18.7 16.1 0.4 5.3 3.2 30.04

Ours 86.6 38.4 79.8 26.4 18.1 34.7 21.3 16.3 81.2 28.7 76.5 50.1 16.6 80.7 28.3 21.4 2.3 14.3 10.9 38.56
NonAdapt

7 7
66.4 23.9 69.1 16.3 15.8 19.6 15.8 8.6 77.7 19.5 66.1 43.2 12.1 68.9 17.3 17.2 0.3 4.8 2.9 29.76

Ours 84.6 31.5 76.3 25.4 17.2 28.2 21.5 13.7 80.7 26.8 74.9 47.5 15.8 77.1 22.2 22.7 1.7 8.9 9.7 36.11

Table 9. Class-wise Performance comparison from SYNTHIA to Cityscapes with VGG base network. All the best accuracies with respect
to VGG-16 base network are in bold.
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VGG19

NonAdapt [56]
3 3

5.6 11.2 59.6 0.8 0.5 21.5 8.0 5.3 72.4 75.6 35.1 9.0 23.6 4.5 0.5 18.0 22.0
Curriculum [56] 65.2 26.1 74.9 0.1 0.5 10.7 3.7 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 29.0
CGAN [20] 3 3 85.0 25.8 73.5 3.4 3.0 31.5 19.5 21.3 67.4 69.4 68.5 25.0 76.5 41.6 17.9 29.5 41.2

VGG16

NonAdapt [19]
3 3

6.4 17.7 29.7 1.2 0.0 15.1 0.0 7.2 30.3 66.8 51.1 1.5 47.3 3.9 0.1 0.0 17.4
FCNs Wld [19] 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 20.2
NonAdapt [41]

3 3
30.1 17.5 70.2 5.9 0.1 16.7 9.1 12.6 74.5 76.3 43.9 13.2 35.7 14.3 3.7 5.6 26.8

LSD [41] 80.1 29.1 77.5 2.8 0.4 26.8 11.1 18.0 78.1 76.7 48.2 15.2 70.5 17.4 8.7 16.7 36.1
NonAdapt [3]

3 3
4.7 11.6 62.3 10.7 0.0 22.8 4.3 15.3 68.0 70.8 49.7 6.4 60.5 11.8 2.6 4.3 25.4

ROAD [3] 77.7 30.0 77.5 9.6 0.3 25.8 10.3 15.6 77.6 79.8 44.5 16.6 67.8 14.5 7.0 23.8 36.2
NonAdapt [62]

3 3
17.2 19.7 47.3 1.1 0.0 19.1 3.0 9.1 71.8 78.3 37.6 4.7 42.2 9.0 0.1 0.9 22.6

CBST [62] 69.6 28.7 69.5 12.1 0.1 25.4 11.9 13.6 82.0 81.9 49.1 14.5 66.0 6.6 3.7 32.4 35.4
NonAdapt [52]

3 3
10.8 11.4 66.6 1.6 0.1 16.9 5.5 14.1 74.2 76.2 46.0 11.5 45.4 15.1 6.0 13.4 25.9

DCAN [52] 79.9 30.4 70.8 1.6 0.6 22.3 6.7 23.0 76.9 73.9 41.9 16.7 61.7 11.5 10.3 38.6 35.4
DAM [21] 3 3 – – – – – – – – – – – – – – – – 30.7
NonAdapt [60]

3 3
– – – – – – – – – – – – – – – – 24.9

PTP [60] – – – – – – – – – – – – – – – – 34.2
NonAdapt

7 3
15.6 12.3 70.3 6.7 0.2 20.4 5.6 15.3 73.5 76.2 47.2 10.5 54.3 12.1 5.3 10.6 27.3

Ours 78.9 31.4 79.3 9.6 0.2 27.3 10.1 15.6 76.2 78.5 45.1 16.4 69.8 13.6 8.3 22.7 36.4
NonAdapt

7 7
14.7 11.8 68.5 7.3 0.1 19.6 4.6 14.4 71.8 73.2 48.5 9.1 56.1 11.7 4.9 11.7 26.8

Ours 77.5 30.7 78.6 5.6 0.2 26.7 10.6 16.1 75.2 76.5 44.1 15.8 69.9 14.7 8.6 17.6 35.5


