Appendix
A. Detailed Comparison with Other Works.

In Section 4.4 and Section 4.5 of our main paper, we
provide comparison of the overall performance (mean IoU)
of the models, specifically comparison with other domain
generalization works from GTA to Cityscapes, and with
other domain adaptation works from GTA to Cityscapes as
well as from SYNTHIA to Cityscapes. Here, we provide
more detailed comparison of the class-wise accuracies in
Table 7, Table 8, and Table 9. From the detailed tables,
we can see that our method provides better performance in
many classes and outperforms the state-of-the-art methods
in terms of mloU under both domain generalization and do-
main adaptation, which shows the efficacy and superiority
of our method.

B. Additional Experiments on auxiliary do-
mains and color augmentation.

Two more experiments are conducted with FCNS8s-
VGG16 in this section. First, we re-run our approach with
15 real-world styles from the BDD dataset, including dif-
ferent weather conditions, time of day (TOD), efc. Then,
we replace the style transfer step with 15 color augmenta-
tions !, varying the hue, saturation, grayscale, contrast, etc.
These changes preserve the semantics of the objects.

Table 6 shows the new results (last two rows) along with
those reported in the main paper. “Random” stands for the
styles randomly selected from ImageNet and Artworks, and
“Semantics” are the styles of the Cityscapes classes (e.g.,
Car, Road, etc.). The results are close to each other except
that the color augmentation is a little worse than the others.
The pyramid consistency is effective for all the test cases.

Table 6. Adaptation from GTA with different style sets. We report
results (mloU%) both without / with the pyramid consistency.

Style Set Segn;r;glcs Cityscapes Mapillary
Random X 34.64/36.11 | 31.64/32.25
Semantics X 34.84/35.62 | 31.29/32.18
Weather-TOD X 34.51/35.89 | 31.24/32.18
Color Change 4 33.56/34.52 | 30.27/32.06

C. More Discussion.

Table 6 shows that the color augmentation performs a
little worse than the style transfers probably for two reasons.
One is that it does not bring to the synthetic images any
appearances of the real images by design. The other is that
it randomizes the images only by color (almost uniformly)
and no texture. Learning an optimal non-uniform color shift
policy is another future direction to explore.

lhttps://qithub.com/aleju/imqauq

Table 6 shows that different style sets, including the real
styles (i.e. weather) suggested by R3, lead to similar results.
Together with Figure 4 in the paper, we find that “how many
domains” influences the results more than “what domains”.


https://github.com/aleju/imgaug

Table 7. Class-wise Performance comparison on Domain Generalization from GTA to Cityscapes with ResNet-50 base network.

Train  Val 4 en E“ ;0 g ‘&:
Network | Method w/ on - % g - 3 P g é §’0 g . é 5 % ) = g %;‘ %
Tet Te) g 7 3 §$ & & E§ E ¢ 5 % &8 2% § £ 2 E & 2| %
NonAdapt [34] | X - - - - - - - - - - - = - = — - = - [ 22.17
ResNet-50 | JEN-Net [31] - - - - - - = - = == === === = = | 2964
NonAdapt X X 845 123 754 192 9.1 187 192 75 816 309 738 427 89 764 172 278 18 86 12| 3245
Ours 90.1 21.6 794 256 182 226 264 165 829 343 77.1 46.1 135 783 244 29.1 3.6 134 7.8 | 3742

Table 8. Class-wise Performance comparison from GTA to Cityscapes with VGG base network. All the best accuracies with respect to
VGG-16 base network are in bold.

Train  Val 2 o Eﬁ .gﬂ ; % .
work | Meth n 3 = [5) ) =] £ g = -

eer Mt e w3 202 0z L2 802 % F oo 7 ofo5 foso8 iz
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NonAdapt [56] v v 18.1 68 641 73 87 210 149 168 459 24 o644 416 175 553 84 50 69 43 138 | 223
VGG19 | Curriculum [56] 749 220 717 60 119 84 163 11.1 757 133 66,5 380 93 552 188 189 00 16.8 16.6 | 289
CGAN [20] v v 892 49.0 707 135 109 385 294 337 779 376 658 751 324 778 392 452 0.0 255 354 | 445
NonAdapt [19] v v 319 189 477 74 3.1 160 104 10 765 130 589 360 1.0 67.1 95 37 00 0.0 0.0 21.1

FCNs WId [19] 704 324 621 149 54 109 142 27 792 213 646 441 42 704 80 73 00 35 0.0 27.1
NonAdapt [41] v v 735 213 723 189 143 125 151 53 772 174 643 437 128 754 248 78 0.0 49 1.8 29.6

LSD [41] 88.0 30.5 786 252 235 167 235 11.6 787 272 719 513 195 804 198 183 09 208 184 | 37.1
NonAdapt [3] v v 298 160 566 92 173 135 13.6 98 749 6.7 543 419 29 450 33 131 13 68 0.0 219

ROAD [3] 854 312 786 279 222 219 237 114 807 293 689 485 141 780 19.1 238 94 83 0.0 359
NonAdapt [ 18] v v 260 149 651 55 129 89 6.0 25 700 29 470 245 0.0 400 121 15 00 0.0 0.0 17.9
CyCADA [ 18] 852 372 765 218 150 238 229 215 805 313 607 505 9.0 769 17.1 282 45 98 0.0 354
NonAdapt [40] v v 259 109 505 33 122 254 286 13 783 73 639 521 79 663 52 78 09 137 07 249

MCD [40] 864 85 761 186 97 149 178 06 828 327 714 252 1.1 763 161 17.1 14 02 0.0 28.8
VGG16 121 [32] v v/ | 853 380 713 186 16 18.7 12 4.5 72 434 637 43.1 33 767 144 128 03 98 0.6 31.8
NonAdapt [62] v v 64.0 221 686 133 87 199 155 59 749 134 370 377 103 482 6.1 1.2 1.8 108 29 243
CBST-SP [62] 904 508 720 183 95 272 286 141 824 251 708 426 145 769 59 125 12 140 28.6 | 36.1
NonAdapt [52] v v 725 251 712 6.6 134 123 110 47 761 164 677 431 80 704 113 48 0.0 139 04 27.8

DCAN [52] 823 267 774 237 205 204 303 159 809 254 695 526 11.1 79.6 249 212 13 17.0 6.7 36.2
NonAdapt [60] - - - - - - - - - - - - - - - - - - - 30.0

PTP [60] 7 v - - - - - - - - - - - - - - - - - - - 38.1
AdaptSeg [50] 4 v/ | 873 298 786 21.1 182 225 215 11.0 797 296 713 468 65 80.1 230 269 00 106 03 35.0
NonAdapt [21] - - - - - — — - - - - - - — — - - - - 18.8

DAM [21] v v - - - - - - - - - - - - - - - - - - - 32.6
NonAdapt X v 684 247 689 18.1 152 181 167 9.6 784 183 657 436 123 69.1 187 16.1 04 53 3.2 | 30.04
Ours 86.6 384 79.8 264 18.1 347 213 163 812 287 765 50.1 166 80.7 283 214 23 143 109 | 38.56
NonAdapt X X 664 239 69.1 163 158 196 158 86 777 195 66.1 432 121 689 173 172 03 48 2.9 129.76
Ours 846 315 763 254 172 282 215 137 80.7 268 749 475 158 77.1 222 227 17 89 9.7 | 36.11

Table 9. Class-wise Performance comparison from SYNTHIA to Cityscapes with VGG base network. All the best accuracies with respect
to VGG-16 base network are in bold.

Train  Val i~ o0 Eﬂ ;‘3 .§ é
Network | Method wioon | g = _ 3 N & & £ § - %D § =
Tgt Tgt| 8 28 =5 3 & 3§ 5 = 2 » F S 5 - T
2 Z 8 3 & a B B > 2 =% =) S 2 g ks g
NonAdapt [56] v v 56 112 596 08 0.5 215 8.0 53 724 756 351 90 236 45 0.5 18.0 | 22.0
VGG19 | Curriculum [56] 652 26.1 749 0.1 05 107 3.7 3.0 76.1 70.6 47.1 82 432 207 0.7 13.1 | 29.0
CGAN [20] v v | 8.0 258 735 34 30 315 195 213 674 694 685 250 765 41.6 179 295|412
NonAdapt [19] v v 64 177 297 12 0.0 151 0.0 72 303 668 51.1 1.5 473 39 0.1 0.0 | 174
FCNs WId [19] 11.5 19.6 308 44 00 203 0.1 11.7 423 687 512 38 540 32 0.2 0.6 | 20.2
NonAdapt [41] v v 30.1 175 702 59 0.1 167 9.1 126 745 763 439 132 357 143 3.7 5.6 | 26.8
LSD [41] 80.1 29.1 775 28 04 268 11.1 18.0 781 76.7 482 152 705 174 87 16.7 | 36.1
NonAdapt [3] v v 47 116 623 107 00 228 43 153 68.0 708 497 64 605 11.8 26 43 | 254
ROAD [3] 777 300 775 9.6 03 258 103 156 776 79.8 445 166 67.8 145 7.0 23.8 | 36.2
NonAdapt [62] v v 172 197 473 1.1 00 19.1 3.0 9.1 718 783 37.6 47 422 90 0.1 0.9 | 22.6
CBST [62] 69.6 287 695 121 0.1 254 119 136 82.0 819 49.1 145 66.0 6.6 3.7 324|354
VGG16 | NonAdapt [52] % v 108 114 666 1.6 0.1 169 55 141 742 762 46.0 115 454 151 6.0 134|259
DCAN [52] 799 304 708 16 0.6 223 67 23.0 769 739 419 167 617 115 103 38.6 | 354
DAM [21] v v - - - - - - - - - - - - - - - - 30.7
NonAdapt [60] - - - - - - - - - - - - - - - - 24.9
PTP [60] A - - - - - - - - - - - - - — | 342
NonAdapt X v 156 123 703 67 02 204 56 153 735 762 472 105 543 121 53 106 | 273
Ours 789 314 793 96 02 273 101 156 762 785 451 164 69.8 13.6 83 227 | 364
NonAdapt X X 147 11.8 685 73 0.1 196 46 144 718 732 485 9.1 56.1 11.7 49 11.7 | 26.8
Ours 775 30.7 786 56 02 267 106 16.1 752 765 441 158 699 147 8.6 17.6 | 355




