CutMix: Regularization Strategy to Train Strong Classifiers
with Localizable Features
— Supplementary Material —

Dongyoon Han!
Junsuk Choe!?

Sangdoo Yun!

Seong Joon Oh?
Youngjoon Yoo!

Sanghyuk Chun!

IClova Al Research, NAVER Corp.
2Clova Al Research, LINE Plus Corp.
3Yonsei University

A. CutMix Algorithm

We present the code-level description of CutMix algo-
rithm in Algorithm Al. N, C, and K denote the size of
minibatch, channel size of input image, and the number of
classes. First, CutMix shuffles the order of the minibatch
input and target along the first axis of the tensors. And the
lambda and the cropping region (x1,x2,y1,y2) are sampled.
Then, we mix the input and input_s by replacing the crop-
ping region of input to the region of input_s. The target label
is also mixed by interpolating method.

Note that CutMix is easy to implement with few lines
(from line 4 to line 15), so is very practical algorithm giving
significant impact on a wide range of tasks.

B. Weakly-supervised Object Localization

We describe the training and evaluation procedure of

weakly-supervised object localization in detail.
Network modification: Basically weakly-supervised ob-
ject localization (WSOL) has the same training strategy as
image classification does. Training WSOL is starting from
ImageNet-pretrained model. From the base network struc-
tures, VGG-16 and ResNet-50 [3], WSOL takes larger spa-
tial size of feature map 14 x 14 whereas the original models
has 7 x 7. For VGG network, we utilize VGG-GAP, which
is a modified VGG-16 introduced in [16]. For ResNet-50,
we modified the final residual block (1ayer4) to have no
stride (= 1), which originally has stride 2.

Since the network is modified and the target dataset
could be different from ImageNet [10], the last fully-
connected layer is randomly initialized with the final out-
put dimension of 200 and 1000 for CUB200-2011 [13] and
ImageNet, respectively.

Input image transformation: For fair comparison, we
used the same data augmentation strategy except Mixup,

Cutout, and CutMix as the state-of-the-art WSOL meth-
ods do [11, 15]. In training, the input image is resized to
256 x 256 size and randomly cropped 224 x 224 size im-
ages are used to train network. In testing, the input image is
resized to 256 x 256, cropped at center with 224 x 224 size
and used to validate the network, which called single crop
strategy.

Estimating bounding box: We utilize class activation
mapping (CAM) [16] to estimate the bounding box of an
object. First we compute CAM of an image, and next, we
decide the foreground region of the image by binarizing the
CAM with a specific threshold. The region with intensity
over the threshold is set to 1, otherwise to 0. We use the
threshold as a specific rate o of the maximum intensity of
the CAM. We set o to 0.15 for all our experiments. From
the binarized foreground map, the tightest box which can
cover the largest connected region in the foreground map is
selected to the bounding box for WSOL.

Evaluation metric: To measure the localization accuracy
of models, we report top-1 localization accuracy (Loc),
which is used for ImageNet localization challenge [10]. For
top-1 localization accuracy, intersection-over-union (IoU)
between the estimated bounding box and ground truth posi-
tion is larger than 0.5, and, at the same time, the estimated
class label should be correct. Otherwise, top-1 localization
accuracy treats the estimation was wrong.

B.1. CUB200-2011

CUB-200-2011 dataset [13] contains over 11 K images
with 200 categories of birds. We set the number of train-
ing epochs to 600. For ResNet-50, the learning rate for the
last fully-connected layer and the other were set to 0.01 and
0.001, respectively. For VGG network, the learning rate for
the last fully-connected layer and the other were set to 0.001
and 0.0001, respectively. The learning rate is decaying by



Algorithm A1 Pseudo-code of CutMix

1: for each iteration do
input, target = get_minibatch(dataset)
if mode == training then

input_s, target_s = shuffle_minibatch(input, target)

2

3

4

5: lambda = Unif(0,1)

6: r_x = Unif(0,W)

7 r_y = Unif(0,H)

8 r-w = Sqrt(1 - lambda)

9: r_h = Sqrt(1 - lambda)
10: x1 = Round(Clip(r_x - r_-w / 2, min=0))

> input is NxCx W xH size tensor, target is N xK size tensor.

> CutMix starts here.

11: x2 = Round(Clip(r_x + r-w / 2, max=W))

12: y1 = Round(Clip(r-y - r-h / 2, min=0))

13: y2 = Round(Clip(r_y + r_h / 2, min=H))

14: input[:, :, x1:x2, yl:y2] = input_s[:, :, x1:x2, y1:y2]

15: lambda = 1 - (x2-x1)*(y2-y1)/(W*H) > Adjust lambda to the exact area ratio.
16: target = lambda * target + (1 - lambda) * target_s > CutMix ends.
17: end if

18: output = model_forward(input)

19: loss = compute_loss(output, target)

20: model_update()

21: end for

the factor of 0.1 at every 150 epochs. We used SGD op-
timizer, and the minibatch size, momentum, weight decay
were set to 32, 0.9, and 0.0001.

B.2. ImageNet dataset

ImageNet-1K [10] is a large-scale dataset for general ob-
jects consisting of 13 M training samples and 50 K valida-
tion samples. We set the number of training epochs to 20.
The learning rate for the last fully-connected layer and the
other were set to 0.1 and 0.01, respectively. The learning
rate is decaying by the factor of 0.1 at every 6 epochs. We
used SGD optimizer, and the minibatch size, momentum,
weight decay were set to 256, 0.9, and 0.0001.

C. Transfer Learning to Object Detection

We evaluate the models on the Pascal VOC 2007 detec-
tion benchmark [!] with 5 K test images over 20 ob-
ject categories. For training, we use both VOC2007 and
VOC2012 trainval (VOC07+12).

Finetuning on SSD' [8]: The input image is resized to
300 x 300 (SSD300) and we used the basic training strategy
of the original paper such as data augmentation, prior boxes,
and extra layers. Since the backbone network is changed
from VGG16 to ResNet-50, the pooling location conv4_3
of VGG16 is modified to the output of 1ayer?2 of ResNet-
50. For training, we set the batch size, learning rate, and
training iterations to 32, 0.001, and 120 K, respectively. The

Uhttps://github.com/amdegroot/ssd.pytorch

learning rate is decayed by the factor of 0.1 at 80 K and 100
K iterations.

Finetuning on Faster-RCNN? [9]: Faster-RCNN takes
fully-convolutional structure, so we only modify the back-
bone from VGG16 to ResNet-50. The batch size, learning
rate, training iterations are set to 8, 0.01, and 120 K. The
learning rate is decayed by the factor of 0.1 at 100 K itera-
tions.

D. Transfer Learning to Image Captioning

MS-COCO dataset [7] contains 120 K trainval
images and 40 K test images. From the base model
NIC® [12], the backbone model is changed from
GoogLeNet to ResNet-50. For training, we set batch size,
learning rate, and training epochs to 20, 0.001, and 100, re-
spectively. For evaluation, the beam size is set to 20 for all
the experiments. Image captioning results with various met-
rics are shown in Table Al.

E. Robustness and Uncertainty

In this section, we describe the details of the experimen-
tal setting and evaluation methods.

E.1. Robustness

We evaluate the model robustness to adversarial per-
turbations, occlusion and in-between samples using Ima-

Zhttps://github.com/jwyang/faster-rcnn.pytorch
3https://github.com/stevehuanghe/image _captioning



BLEU1

BLEU2 BLEU3 BLEU4 METEOR ROUGE CIDER

ResNet-50 (Baseline) 614 43.8
ResNet-50 + Mixup 61.6 44.1
ResNet-50 + Cutout 63.0 45.3
ResNet-50 + CutMix 64.2 46.3

314
31.6
32.6
33.6

229 22.8 44.7 71.2
232 229 47.9 72.2
24.0 22.6 48.2 74.1
249 23.1 49.0 77.6

Table Al: Image captioning results on MS-COCO dataset.

geNet trained models. For the base models, we use ResNet-
50 structure and follow the settings in Section 4.1.1. For
comparison, we use ResNet-50 trained without any addi-
tional regularization or augmentation techniques, ResNet-
50 trained by Mixup strategy, ResNet-50 trained by Cutout
strategy and ResNet-50 trained by our proposed CutMix
strategy.

Fast Gradient Sign Method (FGSM): We employ Fast
Gradient Sign Method (FGSM) [2] to generate adversarial
samples. For the given image x, the ground truth label y and
the noise size ¢, FGSM generates an adversarial sample as
the following

=z +esign(V.L(0,z,y)), (D

=

where L(0, x,y) denotes a loss function, for example, cross
entropy function. In our experiments, we set the noise scale
e = 8/255.

Occlusion: For the given hole size s, we make a hole with
width and height equals to s in the center of the image. For
center occluded samples, we zeroed-out inside of the hole
and for boundary occluded samples, we zeroed-out outside
of the hole. In our experiments, we test the top-1 ImageNet
validation accuracy of the models with varying hole size
from 0 to 224.

In-between class samples: To generate in-between class
samples, we first sample 50, 000 pairs of images from the
ImageNet validation set. For generating Mixup samples, we
generate a sample x from the selected pair x4 and xp by
x = Axag + (1 — A)zp. We report the top-1 accuracy on
the Mixup samples by varying A from O to 1. To generate
CutMix in-between samples, we employ the center mask
instead of the random mask. We follow the hole generation
process used in the occlusion experiments. We evaluate the
top-1 accuracy on the CutMix samples by varing hole size
s from 0 to 224.

E.2. Uncertainty

Deep neural networks are often overconfident in their
predictions. For example, deep neural networks produce
high confidence number even for random noise [4]. One
standard benchmark to evaluate the overconfidence of the
network is Out-of-distribution (OOD) detection proposed
by [4]. The authors proposed a threshold-baed detector

which solves the binary classification task by classifying in-
distribution and out-of-distribution using the prediction of
the given network. Recently, a number of reserchs are pro-
posed to enhance the performance of the baseline detector
[6, 5] but in this paper, we follow only the baseline detector
algorithm without any input enhancement and temperature
scaling [6].

Setup: We compare the OOD detector performance using
CIFAR-100 trained models described in Section 4.1.2. For
comparison, we use PyramidNet-200 model without any
regularization method, PyramidNet-200 model with Mixup,
PyramidNet-200 model with Cutout and PyramidNet-200
model with our proposed CutMix.

Evaluation Metrics and Out-of-distributions: In this
work, we follow the experimental setting used in [4, 6]. To
measure the performance of the OOD detector, we report
the true negative rate (TNR) at 95% true positive rate (TPR),
the area under the receiver operating characteristic curve
(AUROC) and detection accuracy of each OOD detector.
We use seven datasets for out-of-distribution: TinyIma-
geNet (crop), TinylmageNet (resize), LSUN [14] (crop),
LSUN (resize), iISUN, Uniform noise and Gaussian noise.
Results: We report OOD detector performance to seven
OODs in Table A2. Overall, CutMix outperforms baseline,
Mixup and Cutout. Moreover, we find that even though
Mixup and Cutout outperform the classification perfor-
mance, Mixup and Cutout largely degenerate the baseline
detector performance. Especially, for Uniform noise and
Gaussian noise, Mixup and Cutout seriously impair the
baseline performance while CutMix dramatically improves
the performance. From the experiments, we observe that our
proposed CutMix enhances the OOD detector performance
while Mixup and Cutout produce more overconfident pre-
dictions to OOD samples than the baseline.
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