Few-Shot Adversarial Learning of Realistic Neural Talking Head Models

A. Supplementary material

In the supplementary material, we provide additional
qualitative results as well as an ablation study and a time
comparison between our method and the baselines for both
inference and training.

A.l. Time comparison results.

In Table 2, we provide a comparison of timings for the
three methods. Additionally, we included the feed-forward
variant of our method in the comparison, which was trained
only for the VoxCeleb2 dataset. The comparison was car-
ried out on a single NVIDIA P40 GPU. For Pix2pixHD and
our method, few-shot learning was done via fine-tuning for
40 epochs on the training set of size 7. For T larger than 1,
we trained the models on batches of 8 images. Each mea-
surement was averaged over 100 iterations.

We see that, given enough training data, our method in
feed-forward variant can outpace all other methods by a
large margin in terms of few-shot training time, while keep-
ing personalization fidelity and realism of the outputs on
quite a high level (as can be seen in Figure 4). But in order
to achieve the best results in terms of quality, fine-tuning
has to be performed, which takes approximately four and a
half minutes on the P40 GPU for 32 training images. The
number of epochs and, hence, the fine-tuning speed can be
optimized further on a case by case basis or via the intro-
duction of a training scheduler, which we did not perform.

On the other hand, inference speed for our method is
comparable or slower than other methods, which is caused
by a large number of parameters we need to encode the
prior knowledge about talking heads. Though, this figure
can be drastically improved via the usage of more modern
GPUs (on an NVIDIA 2080 Ti, the inference time can be
decreased down to 13ms per frame, which is enough for
most real-time applications).

A.2. Ablation study

In this section, we evaluate the contributions related to
the losses we use in the training of our model, as well as
motivate the training procedure. We have already shown in
Figure 4 the effect that the fine-tuning has on the quality of
the results, so we do not evaluate it here. Instead, we focus
on the details of fine-tuning.

The first question we asked was about the importance of
person-specific parameters initialization via the embedder.
We tried different types of random initialization for both
the embedding vector éxgw and the adaptive parameters 1/;
of the generator, but these experiments did not yield any
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Method (T) Time, s
Few-shot learning
X2Face (1) 0.236
Pix2pixHD (1) 33.92
Ours (1) 43.84
Ours-FF (1) 0.061
X2Face (8) 1.176
Pix2pixHD (8) 52.40
Ours (8) 85.48
Ours-FF (8) 0.138
X2Face (32) 7.542
Pix2pixHD (32) 122.6
Ours (32) 258.0
Ours-FF (32) 0.221
Inference
X2Face 0.110
Pix2pixHD 0.034
Ours 0.139

Table 2: Quantitative comparison of few-shot learning and
inference timings for the three models.

plausible images after the fine-tuning. Hence we realized
that the person-specific initialization of the generator pro-
vided by the embedder is important for convergence of the
fine-tuning problem.

Then, we evaluated the contribution of the person-
specific initialization of the discriminator. We remove
Lycu term from the objective and perform meta-learning.
The use of multiple training frames in few-shot learning
problems, like in our final method, leads to optimization
instabilities, so we used a one-shot meta-learning configu-
ration, which turned out to be stable. After meta-learning,
we randomly initialize the person-specific vector W of the
discriminator. The results can be seen in Figure 7. We no-
tice that the results for random initialization are plausible
but introduce a noticeable gap in terms of realism and per-
sonalization fidelity. We, therefore, came to the conclusion
that person-specific initialization of the discriminator also
contributes to the quality of the results, albeit in a lesser
way than the initialization of the generator does.

Finally, we evaluate the contribution of adversarial term
L' apy during the fine-tuning. We, therefore, remove it from
the fine-tuning objective and compare the results to our best
model (see Figure 7). While the difference between these
variants is quite subtle, we note that adversarial fine-tuning
leads to crisper images that better match ground truth both
in terms of pose and image details. The close-up images in
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Figure 6: Comparison with Thies et al.[30]. We used 32 frames for the fine-tuning, while 1100 frames were used to train
the Face2Face model. Note that the output resolution of our model is constrained by the training dataset. Also, our model is
able to synthesize a naturally looking frame from different viewpoints for a fixed pose (given 3D face landmarks), which is a

limitation of the Face2Face system.

Figure 8 were chosen in order to highlight these differences.
A.3. Additional qualitative results

More comparisons with other methods are available in
Figure 9, Figure 10, Figure 6. More puppeteering results
for one-shot learned portraits and photographs are presented
in Figure 11. We also show the results for talking heads
learned from selfies in Figure 13. Additional comparisons
between the methods are provided in the rest of the figures.

A 4. Training and architecture details

As stated in the paper, we used the architecture similar
to the one in [6]. The convolutional parts of the embedder
and the discriminator are the same networks with 6 residual
downsampling blocks, each performing downsampling by
a factor of 2. The inputs of these convolutional networks
are RGB images concatenated with the landmark images,
in total there are 6 input channels. The initial number of
channels is 64, increased by a factor of two in each block,
up to a maximum of 512.

The blocks are pre-activated residual blocks with no nor-
malization, as described in the paper [0]. The first block
is a regular residual block with activation function not be-
ing applied in the end. Each skip connection has a linear
layer inside, if the spatial resolution is being changed. Self-
attention [43] blocks are inserted after three downsampling
blocks. Downsampling is performed via average pooling.

Then, after applying ReLU activation function to the output
tensor, we perform sum-pooling over spatial dimensions.

For the embedder, the resulting vectorized embeddings
for each training image are stored (in order to apply Lvcu
element-wise), and the averaged embeddings are fed into
the generator. For the discriminator, the resulting vector is
used to calculate the realism score.

The generator consists of three parts: 4 residual down-
sampling blocks (with self-attention inserted before the last
block), 4 blocks operating at bottleneck resolution and 4
upsampling blocks (self-attention is inserted after 2 upsam-
pling blocks). Upsampling is performed in the end of the
block, following [6]. The number of channels in bottleneck
layers is 512. Downsampling blocks are normalized via in-
stance normalization [37], while bottleneck and upsampling
blocks are normalized via adaptive instance normalization.
A single linear layer is used to map an embedding vector
to all adaptive parameters. After the last upsampling block,
we insert a final adaptive normalization layer, followed by
a ReL.U and a convolution. The output is then mapped into
[—1,1] via Tanh.

The training was carried out on 8 NVIDIA P40 GPUs,
with batch size 48 via simultaneous gradient descend, with
2 updates of the discriminator per 1 of the generator. In our
experiments, we used PyTorch distributed module and have
performed reduction of the gradients across the GPUs only
for the generator.
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Figure 7: Ablation study of our contributions. The number of training frames is, again, equal to T (the leftmost column), the
example training frame in shown in the source column and the next column shows ground truth image. Then, we remove
Lycn from the meta-learning objective and initialize the embedding vector of the discriminator randomly (third column)
and evaluate the contribution of adversarial fine-tuning compared to the regular fine-tuning with no £’spy in the objective
(fifth column). The last column represents results from our final model.
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Figure 8: More close-up examples of the ablation study examples for the comparison against the model w/o L spy. We used
8 training frames. Notice the geometry gap (top row) and additional artifacts (bottom row) introduced by the removal of
L' spv during fine-tuning.
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Figure 9: Comparison with Averbuch-Elor et al. [4] on the failure cases mentioned in the paper. Notice that our model better
transfers the input pose and also is unaffected by the pose of the original frame, which lifts the ’neutral face” constraint on
the source image assumed in [4].

! Our driving results

Figure 10: Comparison with Pumarola et al. [28] (second column) and our method (right four columns). We perform the
driving in the same way as we animate still images in the paper. Note that in the VoxCeleb datasets face cropping have been
performed differently, so we had to manually crop our results, effectively decreasing the resolution.
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Figure 11: More puppeteering results for talking head models trained in one-shot setting. The image used for one-shot
training problem is in the source column. The next columns show generated images, which were conditioned on the video
sequence of a different person.
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Figure 12: Results for talking head models trained in eight-shot setting. Example training frame is in the source column.
The next columns show generated images, which were conditioned on the pose tracks taken from a different video sequence
with the same person.
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Figure 13: Results for talking head models trained in 16-shot setting on selfie photographs with driving landmarks taken from
the different video of the same person. Example training frames are shown in the source column. The next columns show
generated images, which were conditioned on the different video sequence of the same person.
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Figure 14: First of the extended qualitative comparisons on the VoxCeleb1 dataset. Here, the comparison is carried out with
respect to both the qualitative performance of each method and the way the amount of the training data affects the results.
The notation for the columns follows Figure 3 in the main paper.
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Figure 15: Second extended qualitative comparison on the VoxCelebl dataset. Here, we compare qualitative performance
of the three methods on different people not seen during meta-learning or pretraining. We used eight shot learning problem
formulation. The notation for the columns follows Figure 3 in the main paper.
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Figure 16: First of the extended qualitative comparisons on the VoxCeleb2 dataset. Here, the comparison is carried out with
respect to both the qualitative performance of each variant of our method and the way the amount of the training data affects
the results. The notation for the columns follows Figure 4 in the main paper.
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Figure 17: Second extended qualitative comparison on the VoxCeleb2 dataset. Here, we compare qualitative performance of
the three variants of our method on different people not seen during meta-learning or pretraining. We used eight shot learning
problem formulation. The notation for the columns follows Figure 4 in the main paper.



