
Differentiable Learning-to-Group Channels via
Groupable Convolutional Neural Networks

Appendices
A. Extension

In the main text, we employ an illustrative example when
C in = Cout to explain the construction of binary relation-
ship matrix U . In fact, DGConv can be generalized to case
where C in 6= Cout by using the following simple transfor-
mations.

GroupUp. When a certain DGConv layer conducts con-
volution by increasing the channel size by r times, i.e.
rC in = Cout, we first construct Ũ ∈ {0, 1}Cin×Cin

that
is the same as the main text. We can derive the relationship
matrix U as follow:

U = Ũ Ĩu, Ĩu = [Iin, · · · , Iin︸ ︷︷ ︸
r′s

] (1)

where Ĩu ∈ {0, 1}C
in×Cout

is a matrix concatenated by
identity matrices Iin ∈ {0, 1}C

in×Cin

.
GroupDown. When a certain DGConv layer conducts

convolution by decreasing the channel size by r times,
i.e. C in = rCout. Similar to GroupUp, we firstly con-
struct Ũ ∈ {0, 1}Cout×Cout

. Then relationship matrix U
can be computed by

U = ĨdŨ , Ĩd = [Iout, · · · , Iout︸ ︷︷ ︸
r′s

] (2)

where Ĩd ∈ {0, 1}C
in×Cout

is a matrix concatenated by
identity matrices Iout ∈ {0, 1}C

out×Cout

.

B. Back-Propagation of DGConv

Before introducing back-propagation of a DGConv
layer, we first describe the parameterization process of DG-
Conv. As shown in Fig.1, the convolution kernel w̃ is
produced by multiplying a binary matrix U on a element
basis. U can be decomposed into multiple sub-matrixes
Uk, k = 1, · · · ,K by Kronecker product and each sub-
matrix Uk has diagonal of ones and non-diagonal of gk.
Since g is obtained by a sign function that is not differen-
tiable and the gradient is manually designed, we treat g as
a learnable parameter and back-propagate the gradient wrt.
g. Here we write down forward computation as follows:

latex/DGConv2.pdf

Figure 1. Illustration of parameterization process of a DGConv
layer. f and o indicate the input and output of a DGConv layer. ∗
denotes convolution.

oij =

k−1∑
m=0

k−1∑
n=0

f(i+m)(j+n)(U � ωmn), (3)

U =

K⊗
k=1

Uk, Uk =

[
1 gk
gk 1

]
. (4)

where f(i+m)(j+n) ∈ RN×Cin

represents the hidden units
of the input feature map F , ωmn ∈ RCin×Cout

represents
the convolution weights with kernel size k × k and oij de-
notes the output of a DGConv layer.

Denote a top-down gradient ∂L
∂oij

as dij , where i ∈ [H]

and j ∈ [W ]. For simplicity, we consider the case where
C in = Cout = C. We use chain rule to back-propagate the

1



Figure 2. Learned number of groups for each DGConv layer in G-ResNeXt101 b = 32. The x-axis denotes the number of channels in
DGConv layers under network’s input to output direction, and the y-axis is the group number of corresponding layers.

gradient of loss L through the above transformations,

∂L
∂ωmn

=

H,W∑
i,j

f(i+m)(j+n)
Tdij

� U, (5)

∂L
∂gk

=
∂L
∂U
• ∂U

∂gk
(6)

where • denotes the Frobenius inner product. Now, we pro-
vide detailed derivations of ∂L

∂U and ∂U
∂gk

. The first term can
be derived as follow:

∂L
∂U

=

k−1,k−1∑
m=0,n=0

ωmn �

H,W∑
i,j

f(i+m)(j+n)
Tdij

 (7)

To compute the derivative of U wrt. gk, we refer to the
following remark.

Remark 1 For A ∈ Rm1×n1 , B ∈ Rm2×n2 , then

B ⊗A = Sm1,m2
(A⊗B)Sn1,n2

(8)

where Sm,n =
∑m

i=1(ei
T ⊗ In ⊗ ei) =

∑n
j=1(ej ⊗ Im ⊗

ej
T) is the perfect shuffle permutation matrix. ei denotes

the i-th canonical vector that is the vector with 1 in the i-th
coordinate and 0 elsewhere. In is an identity matrix with
size of n.

Denote Ũk =
⊗K

t=k+1 Ut

⊗k−1
t=1 Ut, by Remark 1, U can

be reformulated as below:

U =
(
Sk−1

C
2 ,2

)
Uk ⊗ Ũk

(
Sk−1

C
2 ,2

)
T (9)

By Eqn.(9), it can be inspected that

∂U

∂gk
=
(
Sk−1

C
2 ,2

)[
0 1
1 0

]
⊗ Ũk

(
Sk−1

C
2 ,2

)
T (10)

By putting Eqn.(6), (7) and (10) together, we can compute
the gradient of the loss L with respect to g.

Architecture top-1 top-5
ResNet50 70.95 89.4
ResNeXt50 71.06 89.6
G-ResNeXt50 72.58 90.6

Table 1. Results of action recognition in Kinetics-400 using TSN.

C. Transferability

Action Recognition in Video We evaluate the effective-
ness of DGConv on action recognition task on Kinetics-400
dataset [1]. The network used here is temporal segment net-
work(TSN) [4]. In the training phase, one video is divided
into 5 equal-length segments, and one frame is randomly
sampled from each segment. The network take frames as
input, then the outputs at the final layer are averaged and
passed into Softmax layer giving the classification result of
this video. During the evaluation, 25 frames are taken uni-
formly from each video. The data argumentation, hyper-
parameters and training process all follow TSN’s setting.
The batch size is 128 (32 videos per GPU). We use SGD
with initial learning rate 0.001 for optimization. The learn-
ing rate is decayed by ratio 0.1 at step 50k, 80k, and the
training stops at step 100k. We give the results of three
backbones(ResNet50, ResNeXt50, G-ResNeXt50) in Ta-
ble. 1. For G-ResNeXt50, the number of groups in GConv
is fixed after pretrained from ImageNet.

Object Detection We use Faster R-CNN [3]+FPN as de-
tection framework, and evaluate the results on COCO [2].
Both the training and evaluation processes follow Caffe2-
Detectron [5]. During training, each GPU takes two images
as input, and the total batch size is 16. The optimizer we
use is SGD. The initial learning rate(lr) is 0.02, and the
momentum is 0.9. The total training step is 180k, and the
lr is decayed by ratio 0.1 at step 120k and 160k. We re-
port the results of three backbones(ResNet50, ResNeXt50,
G-ResNeXt50) in Table. 2

D. Reproducibility

Fig. 2 depicts group number distribution of reproducibil-
ity experiments. As we can see, although the learned mod-
els have similar performance (showed in Section 4), their



Backbone AP AP.5 AP.75 APl APm APs

ResNet50 37.9 59.3 41.1 49.9 41.1 21.5
ResNeXt50 38.4 60.2 41.4 49.5 41.3 22.8
G-ResNeXt50 38.9 60.7 42.3 50.4 42.1 22.8

Table 2. Results of object detection in COCO using Faster R-
CNN+FPN.

group number distributions vary slightly, implying that the
optimal grouping strategy is not unique. DGConv expresses
a flexibility to learn among these grouping strategies.

References
[1] Kay Will et al. The kinetics human action video dataset. 2017.

2
[2] Lin Tsung-Yi et al. Microsoft coco: Common objects in con-

text. In ECCV, pages 740–755, 2014. 2
[3] Ren Shaoqing et al. Faster r-cnn: Towards real-time object

detection with region proposal networks. pages 91–99, 2015.
2

[4] Wang Limin et al. Temporal segment networks for action
recognition in videos. 2018. 2

[5] Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr
Dollár, and Kaiming He. Detectron. https://github.
com/facebookresearch/detectron, 2018. 2

https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron

