
Predicting 3D Human Dynamics from Video
Supplemental Material

In this section, we provide:
• Discussion of the implementation details with limited

sequence length in Section 0.1.
• A random sample of discovered “Statue” poses from

Penn Action in Figure 2.
• An example of Dynamic Time Warping in Figure 3.
• Per-action evaluation of Human3.6M (Table 1) and

Penn Action (Table 2) with Dynamic Time Warping.
• Per-action evaluation of Human3.6M (Table 3) and

Penn Action (Table 4) without Dynamic Time Warp-
ing.

• A comparison of our method with Constant and Near-
est Neighbor baseline without Dynamic Time Warp-
ing in Table 5.

• A visualization of Nearest Neighbor Predictions in Hu-
man3.6m (Figure 4) and Penn Action (Figure 5).

• A comparison of autoregressive predictions in the la-
tent space versus pose space in Figures 6 and 7.

• Discussion of failure modes such as ambiguity of 2D
keypoints (Figure 8), poor conditioning (Figure 9), lit-
tle motion in conditioning (Figure 10), and drifting
(Figure 11).

0.1. Implementation Details of Sequence Length

As discussed in the main paper, while our approach can
be conditioned on a larger past context by using dilated con-
volutions, our setting is bottlenecked by the length of the
training videos. Here we describe some implementation de-
tails for predicting long range future with short video tracks.

The length of consistent tracklets of human detections is
limited given that people often walk out of the frame or get
occluded. In Penn Action, for instance, the median video
length is 56 frames. Thus, we chose to train on videos with
at least 40 frames. Recall that to avoid drifting, we train
our fAR on its own predictions [?]. Since fAR has a recep-
tive field of 13, our model must predict 14 timesteps into
the future before it is fully conditioned on its own predicted
movie strips. This is further complicated by the fact that
each movie strip is also causal and has its own receptive
field, again pushing back when fAR can begin its first future
prediction. In principle, the maximum number of ground
truth images that fAR could be conditioned on would be one

less than the sum of the receptive field of fAR and fmovie. For
a receptive field of 13, this would be 13 + 13− 1 = 25 im-
ages. However, with tracklets that have a minimum length
of 40 frames, this would leave just 40− 25 = 15 timesteps
for future prediction. This means that just 2 predictions
would be fully conditioned on previously predicted movie
strips. To support future prediction of 25 frames with a se-
quence length of 40, we edge pad the first image such that
fAR is only conditioned on 15 images. This allows us to
compute losses for 25 predictions into the future, leaving
enough training samples in which the past input includes
previous predictions. See the illustration in Figure 1.
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Figure 1: Illustration of the full field of view of the proposed architecture. Since fAR and fmovie each have a receptive
field of 13, it is theoretically possible for fAR to be conditioned on 25 ground truth images. However, we train on videos that
have a minimum length of 40 frames. In order to predict 25 frames into the future, we reduce the number of conditioned
images to 15 by edge padding the first set of image features. See Section 0.1 for more details.

Figure 2: Random Samples of Discovered “Statues.” We show 5 random samples of the statue discovery on 6 action
categories from Penn Action that have fast, acyclic motion. For each sequence, we discovered the statue pose by finding the
conditioning window when the prediction accuracy improves the most. Here, we visualize the first frame after the best input
conditioning.
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Figure 3: Motion sequence after alignment via Dynamic Time Warping. Dynamic Time Warping is often used to compute
similarity between sequences that may have different speeds. Here, we show a Golf Swing sequence in which the prediction
model produces the correct action type but starts the swing too soon. The optimal match produced using Dynamic Time
Warping reduces the penalty of mistiming the motion. Each frame of the ground truth sequence is matched with at least one
frame of the predicted sequence and vice-versa. Green: Index of ground truth image and predicted mesh before applying
Dynamic Time Warping. Black: Index of predicted mesh that corresponds to the ground truth image after applying Dynamic
Time Warping.

Human3.6M Reconst. ↓

Action 1 5 10 20 30

Directions 54.5 57.1 59.2 60.6 63.3
Discussion 58.3 60.0 61.1 61.8 64.8

Eating 50.1 51.7 53.7 54.7 56.9
Greeting 60.4 63.9 68.0 68.1 71.4
Phoning 60.6 61.7 62.6 63.7 66.7
Posing 52.8 55.3 57.1 58.5 61.7

Purchases 52.5 54.0 55.8 56.3 60.0
Sitting 61.1 62.0 62.7 63.3 66.2

Sitting Down 68.3 69.3 70.0 71.3 75.0
Smoking 57.1 58.3 59.5 60.3 63.1

Taking Photo 73.3 74.7 75.9 77.6 81.9
Waiting 53.7 55.4 57.3 58.3 61.0

Walk Together 53.2 55.0 56.1 57.3 59.7
Walking 44.5 47.3 48.9 48.2 50.6

Walking Dog 62.0 63.8 65.8 67.7 70.3
All 57.7 59.5 61.1 62.1 65.1

Table 1: Per-action evaluation of autoregressive future predic-
tion in the latent space on Human3.6M with Dynamic Time
Warping (DTW). For each action, we evaluate the mean recon-
struction error in mm after applying Dynamic Time Warping for
the predictions. Each column corresponds to a different number
of frames into the future. We find that our model most accurately
predicts periodic motion (e.g. Walking), performs reasonably on
actions with small motion (e.g. Eating, Posing, Waiting), but less
so with intricate poses (e.g. Sitting Down, Taking Photo).

Penn Action PCK ↑

Action 1 5 10 20 30

Baseball Pitch 83.9 81.2 78.2 75.5 72.1
Baseball Swing 93.6 92.3 90.2 92.0 90.8

Bench Press 63.0 62.9 62.6 62.6 62.5
Bowl 74.4 69.6 69.1 69.5 70.3

Clean And Jerk 90.8 89.4 88.9 88.9 87.9
Golf Swing 90.6 90.8 88.8 87.5 87.0
Jump Rope 93.0 92.8 92.7 93.0 92.9

Pullup 87.1 86.8 87.0 87.9 87.3
Pushup 71.4 71.0 70.6 71.5 72.2
Situp 67.4 66.6 65.8 66.5 65.4
Squat 80.8 80.7 80.4 78.9 79.1

Strum Guitar 77.8 78.4 79.2 78.8 78.7
Tennis Forehand 92.4 89.9 87.2 86.1 81.4

Tennis Serve 87.0 85.5 82.9 79.1 74.3
All 81.2 80.0 79.0 78.2 77.2

Table 2: Per-action evaluation of autoregressive future pre-
diction in the latent space on Penn Action with Dynamic Time
Warping (DTW). For each action, we evaluate the Percentage of
Correct Keypoints after applying Dynamic Time Warping for the
predictions. Each column corresponds to a different number of
frames into the future. Note the Jumping Jacks action category is
omitted because the corresponding video sequences are too short
to evaluate. On the fast sequences, our model performs more ac-
curately on linear motion (e.g. Baseball Swing, Tennis Forehand)
than sequences that require changes in direction (e.g. windups in
Baseball Pitch and Bowl). For actions in which motion is slow, our
model performance is dependent on the viewpoint quality. For in-
stance, Jump Rope and Clean and Jerk tend to have frontal angles
whereas Bench Press and Situp are often viewed from side angles
that have self-occlusions.



H3.6M Reconst. ↓

Action 1 5 10 20 30

Directions 54.5 59.7 62.0 64.6 77.4
Discussion 58.3 61.4 63.0 66.4 77.5

Eating 50.1 53.3 57.5 57.5 69.5
Greeting 60.4 67.7 74.4 69.1 94.4
Phoning 60.6 62.7 64.5 67.8 80.2
Posing 52.8 57.2 60.7 63.2 80.7

Purchases 52.5 55.5 58.4 64.4 77.5
Sitting 61.1 62.6 64.6 66.4 79.0

Sitting Down 68.3 69.9 71.9 76.1 90.9
Smoking 57.1 59.2 61.7 64.4 76.8

Taking Photo 73.3 76.1 78.3 83.3 99.2
Waiting 53.7 57.0 61.0 61.9 74.8

Walk Together 53.2 57.0 60.0 65.7 78.7
Walking 44.5 50.5 55.1 58.5 75.9

Walking Dog 62.0 65.4 70.0 74.5 81.9
All 57.7 61.2 64.4 67.1 81.1

Table 3: Per-action evaluation of autoregressive future
prediction in the latent space on Human3.6M without
Dynamic Time Warping (DTW). Without DTW, the re-
construction errors accumulate quickly as the sequence goes
on. As with DTW, sequences with less motion (e.g. Eating,
Posing, Waiting) are easier to predict, and sequences with
intricate poses (e.g. Sitting Down, Taking Photo) are chal-
lenging. Note that periodic motions (e.g. Walking) are much
better analyzed with DTW, which accounts for uncertainties
in speed such as stride frequency. This helps account for the
gap in performance without DTW.

Penn Action PCK ↑

Action 1 5 10 20 30

Baseball Pitch 83.9 73.6 62.7 53.8 39.2
Baseball Swing 93.6 88.2 77.2 78.4 68.3

Bench Press 63.0 62.1 61.0 61.4 56.9
Bowl 74.4 63.9 61.3 59.0 55.5

Clean And Jerk 90.8 88.2 86.8 85.6 78.1
Golf Swing 90.6 86.4 77.3 61.8 64.6
Jump Rope 93.0 90.7 91.2 89.4 88.3

Pullup 87.1 85.5 84.4 85.4 77.5
Pushup 71.4 69.8 67.9 67.0 60.9
Situp 67.4 63.6 57.2 53.4 42.8
Squat 80.8 81.5 80.0 77.1 72.7

Strum Guitar 77.8 78.4 79.8 78.7 75.8
Tennis Forehand 92.4 85.7 76.9 75.1 50.2

Tennis Serve 87.0 80.9 71.3 57.7 40.1
All 81.2 77.2 72.4 67.9 60.1

Table 4: Per-action evaluation of autoregressive future
prediction in the latent space on Penn Action without
Dynamic Time Warping (DTW). The prediction accuracy
of actions with fast motion (e.g. Baseball Pitch, Golf Swing,
Tennis Serve, etc.) deteriorates quickly since the speed is
challenging to predict. In addition, these sequences of-
ten begin with little motion as the player prepares to begin
the action or is waiting for the ball to come to them. In
such cases, mis-timing the start of the action results in a
large quantitative penalty. As with DTW, for the slower se-
quences, we observe that the actions that tend to have clearer
viewpoints (e.g. Jump Rope, Pullup) outperform those that
tend to be recorded from the side (e.g. Bench Press, Pushup,
Situp).

H3.6M Reconst. ↓ Penn Action PCK ↑

Method 1 5 10 20 30 1 5 10 20 30

AR on Φ 57.7 61.2 64.4 67.1 81.1 81.2 77.2 72.4 67.9 60.1
AR on Φ, no Lmovie strip 56.9 61.2 64.9 66.8 83.6 80.4 75.4 70.2 65.6 59.0

AR on Θ 57.8 65.9 75.9 91.9 105.2 79.9 67.8 56.2 43.4 35.1
Constant 59.7 71.4 85.9 101.4 102.8 78.3 65.5 54.6 42.3 32.7

Nearest Neighbor 90.3 99.8 110.3 124.7 133.3 62.5 57.6 53.7 44.6 41.1

Table 5: Comparison of autoregressive predictions with various baselines without Dynamic Time Warping. We evaluate our model
with autoregressive prediction in the movie strip latent space Φ (AR on Φ), an ablation in the latent space without the distillation loss (AR
on Φ, No Lmovie strip), and predictions in the pose space Θ (AR on Θ). We also show the results of the no-motion baseline (Constant) and
Nearest Neighbors (NN). The performance of all methods deteriorates more quickly without Dynamic Time Warping. Our method using
autoregressive predictions in the latent space still significantly outperforms the baselines.



Figure 4: Nearest Neighbor Future Predictions on Human3.6M. For each sequence in the test set (red), we search for the
best matching sequence in the training set (blue) and use the succeeding poses as the future prediction (green). Left: NN for
a Walking sequence. While the query has good fit, the NN prediction drifts further from the ground truth over time. Right:
NN for a Sitting Down sequence.

Figure 5: Nearest Neighbor Future Predictions on Penn Action. For each sequence in the test set (red), we search for the
best matching sequence in the training set (blue) and use the succeeding poses as the future prediction (green). Left: NN for
a Baseball Pitch sequence. The predicted motion is faster than the ground truth motion. Right: NN for a Clean and Jerk.
The NN aligns well with the ground truth motion.



Figure 6: Comparison of autoregressive models on performing a clean. For simple motions, predictions in both the latent
space and pose space perform reasonably. The first row of images shows the input sequence, and the rest of the images are
ground truth for reference. We illustrate the conditioning with yellow meshes which are read out from the ground truth movie
strips. The blue meshes show predictions in the latent space while the pink meshes show predictions in the pose space.



Figure 7: Comparison of autoregressive models on a tennis serve. For complex motions, predictions in latent space work
reasonably well while predictions in the pose space struggle with identifying the action and motion. The first row of images
shows the input sequence, and the rest of the images are ground truth for reference. We illustrate the conditioning with yellow
meshes which are read out from the ground truth movie strips. The blue meshes show predictions in the latent space while
the pink meshes show predictions in the pose space.



Figure 8: Failure Mode: Ambiguity of 2D keypoints. In-the-wild data is generally labeled only with 2D keypoints,
which can have multiple 3D interpretations. We rely on an adversarial prior to produce realistic poses. Here, our model
predicts motion that incorrectly extends the subject’s arms, but it is still anatomically plausible and projects to the correct 2D
keypoints. The first row of images shows the input sequence, and the rest of the images are ground truth for reference. We
illustrate the conditioning with yellow meshes which are read out from the ground truth movie strips. The blue meshes show
predictions in the latent space from two different viewpoints.

Figure 9: Failure mode: Poor quality conditioning. Our auto-regressive model is conditioned on the input movie strips from
our temporal encoder. Mistakes made by the temporal encoder due to unusual viewpoints thus carry over to our prediction
model. Here, the benching sequence is recorded from a top-down view, which is rarely encountered in the training data. The
first row of images shows the input sequence, and the rest of the images are ground truth for reference. We illustrate the
conditioning with yellow meshes which are read out from the ground truth movie strips. The blue meshes show predictions
in the latent space from two different viewpoints.



Figure 10: Failure Mode: Conditioned on little motion. Most sports actions in the Penn Action dataset begin with a short
period with no motion as the player gets ready to pitch a ball, waits to bat, or prepares to golf. Thus, it is challenging to
predict when the motion should begin when conditioned on frames corresponding to little motion. Here, the input frames
show the pitcher barely moving, so our model predicts no motion while the athlete does begin to pitch later in the sequence.
The first row of images shows the input sequence, and the rest of the images are ground truth for reference. We illustrate the
conditioning with yellow meshes which are read out from the ground truth movie strips. The blue meshes show predictions
in the latent space from two different viewpoints.



Figure 11: Failure Mode: Drifting past 35 frames. Due to the limited length of sequences in our training data, we train
with future predictions up to 25 frames into the future. We observe that our model is capable of predicting outputs that look
reasonable qualitatively until around 35 frames into the future. Training with longer sequences should alleviate this issue.
The first row of images shows the input sequence, and the rest of the images are ground truth for reference. We illustrate the
conditioning with yellow meshes which are read out from the ground truth movie strips. The blue meshes show predictions
in the latent space.


