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Abstract

In this supplementary file, we first present more details and additional experimental results of our proposed Ranker. Then,
we provide the curves showing the performance of different RankSRGAN models in the ablation study. Finally, we provide
more additional qualitative results to compare our networks with the state-of-the-art methods.

1. Details of Ranker
1.1. Dataset
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Figure 1. The convergence curves of RankSRGAN with Ranker] and Ranker2 in NIQE and PSNR.

Method Ranker Dataset Data Size (k) SROCC | NIQE PSNR
RankSRGAN-R-D1 | Rankerl DIV2K 15 0.78 2.53 24.54
RankSRGAN-R-D2 | Ranker2 DIV2K+Flickr2K 150 0.88 2.51 25.62

Table 1. The performance of RankSRGAN with Rankerl and Ranker2. R-D1: rank datasetl (15 K), R-D2: rank dataset2 (150 K)

To analyze the effects of Ranker on RankSRGAN, we use SRResNet [3]], SRGAN [3]] and ESRGAN [9] to generate two
rank datasets with different sizes. We first employ DIV2K [l1]] to generate rank dataset]l with 15 K image pairs. Besides, we
use DIV2K+Flickr2k [1]] to generate rank dataset2 with 150 K image pairs. Then, we utilize rank datasetl and rank dataset2
to train Rankerl and Ranker2, respectively. Finally, the well-trained Rankerl and Ranker2 are applied on RankSRGAN.
Table |1| shows that more data leads to better SROCC, and the Ranker2 with higher SROCC can reach better performance in
NIQE and PSNR. The convergence curves are shown in Figure|I]
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1.2. Network Architecture

The architecture of Ranker is based on the VGG network [8]. We train three VGG networks varying from shallow to
deep ones: VGG-8, VGG-12 and VGG-16. Table 2] shows the architecture, the number of parameters, and the performance
in different models. Since the VGG-12 can achieve the same accuracy as VGG-16, we apply the VGG-8 and VGG-12 on
RankSRGAN. Figure 2] shows the performance of RankSRGAN with different Rankers. The Ranker with higher value of

SROCC can achieve better performance when applied on RankSRGAN.

Model VGG-8 VGG-12 (Ours) VGG-16
Conv3S1-64 Conv3S1-64 Conv3S1-64, LReLU
Conv4S2-64, BN, LReLU Conv4S2-64, BN, LReLU Conv4S2-64, BN, LReLU
Conv3S1-128, BN, LReL.U
Conv3S1-128, BN, LReLLU Conv3S1-128, BN, LReLLU
Conv4S2-128, BN, LReLU Conv4S2-128, BN, LReLU Conv4S2-128, BN, LReLU
Conv3S1-256, BN, LReLU
Conv3S1-256, BN, LReLU Conv3S1-256, BN, LReLU
Architecture Conv4S2-256, BN, LReLU Conv4S2-256, BN, LReLLU Conv4S2-256, BN, LReLU
Conv3S1-512, BN, LReL.U
Conv3S1-512, BN, LReLU Conv3S1-512, BN, LReLU
Conv4S2-512, BN, LReLU Conv4S2-512, BN, LReLU Conv4S2-512, BN, LReLU
Conv3S1-512, BN, LReLLU
Conv3S1-512, BN, LReLU Conv3S1-512, BN, LReLLU
Conv4S2-512, BN, LReLU Conv4S2-512, BN, LReLU Conv4S2-512, BN, LReLU
Average pooling
FC-100
FC-1
Number of 7,069 13,734 19,194
params (K)
SROCC 0.83 0.88 0.88

Table 2. The network architecture of Rankers with different depths. The network design draws inspiration from VGG [8] but uses Leaky
ReLU activations [5] and strided convolutions instead of pooling layers [7]. Conv3S1-64: Convolutional layer with kernel size 3% 3, stride

1 and channel 64. BN: Batch Normalization. LReLU: Leaky ReLU.
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Figure 2. The convergence curves of RankSRGAN with Ranker-VGG-8 and Ranker-VGG-12 in NIQE and PSNR.



1.3. Output Distribution

In Table 5 and 6 of the main paper, we quantitatively evaluate the effects of Ranker and “regression” Ranker on RankSR-
GAN. To better understand the effects, we provide the histograms of NIQE [6]/Ma [4] label value in the validation dataset
of the rank dataset. Furthermore, we plot the histograms of the output scores of different Rankers (“regression” Ranker and
our Ranker) in Figure [3] Comparing Figure 3] (b) and (c), Ranker successfully enlarges the distance between SRGAN and
ESRGAN. The “regression” Ranker tends to learn the distribution of the NIQE label, while the NIQE values of SRGAN are

close ESRGAN. The same observation is also found in Ma metric as shown in Figure ]
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Figure 3. The histograms of (a) NIQE label value, (b) the regression score of “regression” Ranker and (c) the ranking score of Ranker
(ours). These graphs illustrate that Ranker (ours) successfully managed to separate the different perceptual levels. (Better view in color

version)
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Figure 4. The histograms of (a) Ma label value, (b) the regression score of “regression”” Ranker and (c) the ranking score of Ranker (ours).
These graphs illustrate that Ranker (ours) successfully managed to separate the different perceptual levels.

2. Details of RankSRGAN
2.1. Convergence curves for RankSRGAN-(NIQE,Ma, and PI)

As mentioned in the main paper, Ranker can guide the SR model to be optimized in the direction of perceptual metrics. We
further present the curves showing that our RankSRGAN can achieve a constant improvement compared with the baseline
SRGAN. We provide the curves of RankSRGAN-N, RankSRGAN-M, and RankSRGAN-PI (N: Ranker with NIQE [6],
M: Ranker with Ma [4]], and PI: Ranker with PI [2])) in Figure [5] Besides, we add the curves of RankSRGAN-N-re and
RankSRGAN-M-re (re: “regression” Ranker). We observe that Ranker could help RankSRGAN achieve state-of-the-art
performance in the chosen metric. This shows that our method can generalize well on different perceptual metrics. Compared
with “regression” Ranker, Ranker can accelerate the convergence of RankSRGAN-N. For RankSRGAN-M, Ranker can still
reach state-of-the-art performance (less than 1.40 in ESRGAN), while the “regression” Ranker cannot outperform ESRGAN
(1.40).
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2.2. Convergence curves for RankSRGAN-HR
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Figure 5. The convergence curves of RankSRGAN y, RankSRGAN; and RankSRGANp;.

As shown in Figure [] we present the curves of RankSRGAN and RankSRGAN-HR. To improve the performance of
NIQE evaluation, we use (SRResNet, SRGAN, ESRGAN) to generate rank dataset to train Ranker in RankSRGAN. Figure
[6] shows that RankSRGAN is consistently better than SRGAN by a large margin. Furthermore, we directly use the ground
truth HR to replace ESRGAN . We train our Ranker with the rank dataset (SRResNet, SRGAN, HR) and obtain the new
model RankSRGAN-HR. In Figure [0} RankSRGAN-HR achieves better NIQE values than SRGAN. But at the same time,
RankSRGAN-HR also constantly improves the PSNR. It achieves a good balance between the perceptual metric and PSNR.
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Figure 6. The convergence curves of RankSRGAN-HR in PSNR and NIQE.
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3. More Qualitative Results

In this section, we provide additional qualitative results (x4 enlargement) to clearly show the effectiveness of our RankSR-
GAN. We compare the proposed RankSRGAN with the state-of-the-art perceptual SR methods SRGAN [3] / ESRGAN [9]
and PSNR-oriented method SRResNet [3]. We employ NIQE and PSNR to evaluate those SR methods. Lower NIQE value
indicates better perceptual quality while higher PSNR indicates that there is less distortion with the Ground-Truth image.
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