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Abstract

In this supplemental document, we demonstrate more de-
tailed experiments to evaluate the design choice of Shell-
Conv and ShellNet [17]. Particularly, we demonstrate the
use of additional statistics when learning features in Shell-
Conv, which we found that maxpooling alone is giving the
best performance while other statistics provide very good
results. We also further discuss the neighbor sampling used
in ShellConv. Next, we present the per-class comparison
for object classification on ModelNet40 dataset [14], object
part segmentation on ShapeNet [3], semantic segmentation
for indoor scenes on S3DIS dataset [1], and semantic seg-
mentation for outdoor scenes on Semantic3D dataset [4].
Finally, we show more qualitative results for part and se-
mantic segmentations on ShapeNet dataset [15], S3DIS
dataset [1], Semantic3D dataset [4], respectively.

1. Additional Statistics

We show that it is possible to use other types of statis-
tics for feature learning and still achieve competitive perfor-
mance. For example, we can use average pooling to aggre-
gate the mean feature vectors instead of maxpool features.
The results are shown in Table 1.

We can see that using average pooling leads to over 92%
classification accuracy, which is competitive but not as good
as maxpooling (as in our main paper). Therefore, we simply
use a maxpooling to aggregate statistics in ShellConv.

statistics max mean max+mean

Accuracy 93.1 92.4 92.5

Table 1: Classification accuracy (%) with different statis-
tics. Empirically, all statistics works very well, but max-
pooling gives a slightly better results.

2. Further Discussion on Neighbor Sampling

In ShellConv, we define the shell size (ss) as the num-
ber of points contained in each shell which is fixed in this
work. For each representative point, we construct the shells
within the local neighborhood where the neighborhood size
increases arithmetically (e.g. 16 for 1 shell, 32 for 2 shells,
64 for 4 shells, ss = 16). Intuitively, such design may
be sensitive to the point distribution. When the points are
severe non-uniform, the shells will deviate from equidis-
tant. Thus, in the paper, we assumed a more or less uniform
distribution of input points. However, in implementation
we set a larger ss to cover larger local area such that small
varying density will not much affect the performance. An
alternative sampling scheme is by fixed shell radius that the
shells are equidistant and the number of points contained in
each shell will become different when the points are non-
uniform. We also test this scheme but find no improvement.
This can be explained in two aspects. First, the points of
the testing datasets are approximately uniform distributed.
Second, non-uniform distribution also affects the statistic in
each shell. Thus, we choose fixed ss throughout this paper
for the sake of easy implementation.

3. Per-class Accuracy on ModelNet40

We further evaluate the accuracy of the classification task
per object class. The mean accuracy over the classes and the
per-class accuracies are shown in Table 2 and Table 3. Com-
paring to the results by PointNet [11], PointNet++ [12],
PointCNN [10], and Pointwise [6], we see that our method
obtains a superior performance on most classes. In total,
our method achieves 1st (in bold) in 25/40 classes, while
PointNet [11], PointNet++ [12], PointCNN [10], and Point-
wise [6] has 10, 13, 14, and 3 classes achieving 1st, respec-
tively.
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Method mA

PointNet [11] 86.2
PointNet++ [12] 88.1
PointCNN [10] 88.1
Pointwise [6] 81.4
Ours 89.2

Table 2: Comparisons of mean per-class accuracy (mA, %)
on ModelNet40.

4. Per-class Accuracy on ShapeNet
Please see Table 4.

5. Per-class Accuracy on S3DIS
Please see Table 5.

6. Per-class Accuracy on Semantic3D
In this section, we show the per-class accuracy on Se-

mantic3D benchmark in Table 6. ShellNet ranks 2nd and
achieves competitive performance on many classes. Unlike
existing methods that employ postprocessing such as CRF,
our method uses pure coordinates as input.

7. Visualizations of Part Segmentation
The part segmentation experiment is conducted on the

ShapeNet dataset [15] which comprises 16 different cate-
gories. For each category, we randomly choose an object
and show the qualitative segmentation results in Figure 1,
Figure 2, Figure 3 and Figure 4.

8. Visualizations of Indoor Semantic Segmen-
tation

We plot more qualitative segmentation results in Figure 5
and Figure 6

9. Visualizations of Outdoor Semantic Seg-
mentation

We evaluated the performance on the reduced set of
4 subsampled scans in the Semantic3D dataset [4]. In
the paper, we showed the qualitative results on two scans.
Here, we visualize the segmentation results on the other two
scenes in Figure 7.
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Network airplane bathtub bed bench bookshelf bottle bowl car chair cone

PointNet [11] 100.0 80.0 94.0 75.0 93.0 94.0 100.0 97.9 96.0 100.0
PointNet++ [12] 100.0 92.0 96.0 75.0 94.0 96.0 90.0 99.0 96.0 95.0
PointCNN [10] 100.0 92.0 99.0 80.0 100.0 96.0 90.0 99.0 97.0 95.0
Pointwise [6] 100.0 82.0 93.0 68.4 91.8 93.9 95.0 95.6 96.0 80.0
Ours 100.0 96.0 100.0 65.0 97.0 99.0 95.0 99.0 100.0 90.0

cup curtain desk door dresser flower
pot

glass
box

guitar keyboard lamp

PointNet[11] 70.0 85.0 79.0 95.0 65.1 30.0 94.0 100.0 100.0 90.0
PointNet++ [12] 70.0 90.0 88.4 95.0 70.9 25.0 95.0 100.0 100.0 85.0
PointCNN [10] 60.0 95.0 86.0 90.0 87.2 35.0 92.0 99.0 95.0 85.0
Pointwise [6] 60.0 80.0 76.7 75.0 67.4 10.0 80.8 98.0 100.0 83.3
Ours 75.0 95.0 90.7 80.0 87.2 5.0 96.0 100.0 95.0 85.0

laptop mantel monitor night
stand

person piano plant radio range
hood

sink

PointNet [11] 100.0 96.0 95.0 82.6 85.0 88.8 73.0 70.0 91.0 80.0
PointNet++ [12] 100.0 97.0 99.0 72.1 90.0 96.0 79.0 75.0 97.0 90.0
PointCNN [10] 100.0 94.0 100.0 81.4 95.0 94.0 83.0 85.0 94.0 70.0
Pointwise [6] 95.0 93.9 92.9 70.2 89.5 84.5 78.8 65.0 88.9 65.0
Ours 100.0 99.0 100.0 83.7 95.0 96.0 96.0 80.0 93.0 80.0

sofa stairs stool table tent toilet tv stand vase wardrobe xbox

PointNet [11] 96.0 85.0 90.0 88.0 95.0 99.0 87.0 78.8 60.0 70.0
PointNet++ [12] 98.0 95.0 80.0 83.0 95.0 100.0 89.0 80.0 80.0 75.0
PointCNN [10] 98.0 90.0 70.0 87.0 95.0 100.0 90.0 82.0 65.0 80.0
Pointwise [6] 96.0 80.0 83.3 90.9 90.0 94.9 84.5 81.3 30.0 75.0
Ours 100.0 95.0 85.0 83.0 95.0 100.0 91.0 80.0 75.0 90.0

Table 3: Per-class accuracy of object classification on the ModelNet40 dataset.

Network aero bag cap car chair earphoneguitar knife lamp laptop motor mug pistol rocket skate table

PointNet [11] 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ [12] 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
ResNet [7] 82.7 86.4 84.1 78.2 90.4 69.3 91.4 87.0 83.5 95.4 66.0 92.6 81.8 56.1 75.8 82.2
SynNet [16] 81.6 81.7 81.9 75.2 90.2 74.9 93.0 86.1 84.7 95.6 66.7 92.7 81.6 60.6 82.9 82.1
PointCNN [10] 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0
Ours 84.3 79.6 88.9 79.1 90.0 79.4 91.3 85.9 82.3 95.4 68.6 94.9 82.7 61.5 79.7 81.7

Table 4: Per-class accuracy of object part segmentation on the ShapeNet dataset.
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Network OA mIoU ceiling floor wall beam column window door table chair sofa bookcaseboard clutter

PointNet [11] 78.5 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2
SPG [8] 85.5 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9
ResNet [7] - 56.5 92.5 92.8 78.6 32.8 34.4 51.6 68.1 60.1 59.7 50.2 16.4 44.9 52.0
PointCNN [10] 88.1 65.4 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6
Ours 87.1 66.8 90.2 93.6 79.9 60.4 44.1 64.9 52.9 71.6 84.7 53.8 64.6 48.6 59.4

Table 5: Segmentation results on the S3DIS [1] dataset in overall accuracy (OA, %), micro-averaged IoU (mIoU, %) and
per-class IoU.

Method OA mIoU man-made
terrain

natural ter-
rain

high vege-
tation

low vege-
tation

buildings hard-scape scanning
artefact

cars

TMLC-MSR [5] 86.2 54.2 89.8 74.5 53.7 26.8 88.8 18.9 36.4 44.7
DeePr3SS [9] 88.9 58.5 85.6 83.2 74.2 32.4 89.7 18.5 25.1 59.2
SnapNet [2] 88.6 59.1 82.0 77.3 79.7 22.9 91.1 18.4 37.3 64.4
SegCloud [13] 88.1 61.3 83.9 66.0 86.0 40.5 91.1 30.9 27.5 64.3
SPG [8] 94.0 73.2 97.4 92.6 87.9 44.0 93.2 31.0 63.5 76.2

ShellNet (Ours) 93.7 69.4 96.5 92.2 84.1 40.4 94.5 35.5 44.9 67.4

Table 6: Segmentation results on the Semantic3D [4] dataset in overall accuracy (OA, %), micro-averaged IoU (mIoU, %)
and per-class IoU.
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Figure 1: Part segmentation plane, bag, cap, and guitar objects.
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Figure 2: Part segmentation car, chair, earphone, and laptop objects.
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Figure 3: Part segmentation on motobike, mug, lamp, and table objects.
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Figure 4: Part segmentation on pistol, skateboard, knife, and rocket objects.



Figure 5: Semantic segmentation with S3DIS dataset.

Figure 6: Semantic segmentation with S3DIS dataset.



Figure 7: Semantic segmentation for outdoor scenes in the Semantic3D dataset [4]. Left: colored point clouds (for visualiza-
tion only). Right: our segmentation. Note that the ground truth of the test set is not publicly available.


