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1. Detection results on the KAIST dataset

Miss Rate We use MR, MRC , and MRT to evaluate

the detection results, and compare the proposed AR-CNN

method with other state-of-the-art methods (i.e. [2, 6, 3, 5,

1, 7, 4]) in Figure 1. The miss rate curves are corresponding

to Table 2 in the main paper.

Visualization In Figure 2, we show some visualiza-

tions of detection results of the proposed AR-CNN. For

the pedestrians with position shift problem, proposals of

the sensed (color) modality are adjusted to aligned posi-

tion. This phenomenon demonstrates that the Region Fea-

ture Alignment module can predict the region-wise position

shift of two modalities and adaptively adjust the sensed pro-

posals, thus enabling modality-aligned feature fusion pro-

cess for better classification and localization.

2. Experiments on the color reference

In this section, we fix the color image as the reference

modality. Table 1 shows that our AR-CNN still achieves the

best performance and the smallest standard deviation, fur-

ther validating the effectiveness of the proposed approach.

Additionally, compared to the thermal reference, the color

reference configuration performs at a lower level in experi-

ments. This validates our intuition: the modality with stable

imagery is more suitable to serve as the reference one.

3. KAIST-Paired annotation examples

In Figure 3, we show some examples of our KAIST-

Paired annotation. The bounding boxes are localized in both

modalities, and a unique index is assigned to indicate the

pairing relationship.
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(c) All-day, MR
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Figure 1. Comparisons with the state-of-the-art methods on the KAIST dataset. The scores in the legend are the log-average miss rate

scores of the corresponding methods.

Method
S0

◦

S45
◦

S90
◦

S135
◦

O µ σ µ σ µ σ µ σ

Halfway Fusion [6] 25.10 31.65 5.26 34.66 7.85 28.71 2.46 33.74 8.16

Fusion RPN [3] 20.52 29.12 7.10 29.06 9.20 22.14 1.59 30.02 9.95

Adapted Halfway Fusion 15.06 22.24 6.98 25.96 11.33 17.29 2.30 26.49 11.53

CIAN [7] 14.64 22.06 7.91 24.82 11.06 15.82 1.26 25.43 11.07

MSDS-RCNN [4] 11.28 18.21 6.74 21.00 9.66 12.93 1.28 21.71 10.12

AR-CNN (Ours) 8.86 10.86 1.58 11.66 2.59 9.51 0.62 11.47 2.42

Table 1. Quantitative results of the robustness to thermal position shift (i.e. we fix the color image while shifting the thermal image) on the

KAIST dataset. MRC is used to evaluate the detection performance.



Figure 2. Qualitative results of the proposed method. The first row shows the reference proposals whose confidence score (in range [0, 1.0])
is greater than 0.6, while the second row illustrates the corresponding sensed proposals. In the third row, we select some proposal instances

to demonstrate the effectiveness of the Region Feature Alignment module: orange dotted boxes refer to the reference proposals, which

are good ones in the reference image but suffer the shift problem in the sensed modality; red bounding boxes denote the adjusted sensed

proposals after the region feature alignment process. Green bounding boxes in the last two rows are the final predicted pedestrians whose

confidence score is greater than 0.6.



Figure 3. Examples of our KAIST-Paired annotation. Bounding boxes in green, yellow and red indicate no-occlusion, partial occlusion,

and heavy occlusion respectively. The red characters above the boxes denote the pairing information.


