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1. Test Data Pre-Process
Before feeding an arbitrary portrait to our cascaded net-


work, we first detect the face bounding box using the
method of Viola and Jones [5] and then segment out the
head region with a segmentation network based on FCN-
8s [3]. The network is trained using modified portrait data
from Shen et al. [4]. In order to handle images with arbi-
trary resolution, we pre-process the segmented images to a
uniform size of 512 × 512. The input image is first scaled
so that its detected inter-pupillary distance matches a target
length, computed by averaging that of ground truth images.
The image is then aligned in the same manner as the train-
ing data, by matching the inner corner of each subject’s right
eye to a fixed position. We then crop and pad the image to
512× 512, maintaining the right eye inner alignment.


2. Training Data Preparation
We rendered synthetic portraits using a variety of camera


distances, head poses, and incident illumination conditions.
In particular, we rendered 10 different views for each sub-
ject, randomly sampling candidate head poses in the range
of -45 to +45 in pitch, yaw, and roll. For each view, we
rendered the subject using global illumination and image-
based lighting, randomly sampling the illumination from a
light probe image gallery of 107 unique environments. For
each head pose and lighting condition, we rendered the sub-
ject at twenty different distances, including the canonical
distance of 1.6m, observed as free from perspective distor-
tion. Empirically, we observed that 23cm is the minimal
distance that captures a full face without obvious lens dis-
tortion (note that we do not consider special types of lenses,
e.g. fisheye or wide-angle); thus we sample the distances
by considering 10 distance bins uniformly distributed from
23cm to 1.6m. We adjusted the focal length of the ren-
dering camera to ensure consistent framing, which yields


a focal length range of 18mm − 128mm. To ensure effi-
cient learning, we aligned the renderings by matching the
inner corner of each subject’s right eye to a fixed position.
We use the techniques of Alexander et al. [1] and Chiang
and Fyffe [2] to render photo-realistic portraits in real-time
using OpenGL shaders, which include separable subsurface
scattering in screen-space and photo-real eye rendering.


To supplement this data with additional identities, we
also rendered portraits using the 3D facials scans of the BU-
4DFE dataset [6], after randomly sampling candidate head
poses in the range of -15 to +15 in pitch and yaw and sam-
pling the same range of camera distances. These were ren-
dered simply using perspective projection and rasterization,
without changing illumination or considering complex re-
flectance properties. Out of 58 female subjects and 43 male
subjects total, we trained using 38 female and 25 male sub-
jects, keeping the rest set aside as test data, for a total of
17,000 additional training pairs.


3. Beam-splitter System and Calibration


CAM A CAM BBeam Splitter


Figure 1. Beam-splitter capturing system.


Our beam-splitter capture system enables simultaneous
photography of a subject at two different distances. As
shown in Figure 1, our system includes one fixed camera
CAM B at the canonical distance of 1.6m, one sliding cam-
era CAM A at variable distances from 23cm to 137cm and a
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Specs CAM A CAM B
Model Canon EOS-1DX Canon EOS-1DX Mark II
Lens AF-s NIKKOR 17− 35mm Nikon 135mm


F-stop F-2.8 F-2.8
Sync Hardware sync Hardware sync


Data Streaming FTP Server FTP Server


Table 1. Camera Specifications.


plate beam-splitter at 45◦ along a metal rail. Figure 2 shows
the details of our system.
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Figure 2. Illustration of Beam-splitter system.


Hardware Specifications. In Table 1, we list the specifi-
cations of the two cameras. The beam-splitter is a 254mm×
356mm Edmund Optics plate beam-splitter, with 50% re-
flection and 50% transmission of incident light.


Calibration. In order to capture near “ground truth” im-
ages pairs where only distances vary, we carefully calibrate
the two cameras geometrically and radiometrically, thereby
eliminating potential differences in pose and color rendi-
tion. We start with a leveled surface, aligning CAM A and
CAM B horizontally. We then use a laser pointer to align the
optical axes of the two cameras. In particular, we point the
laser at C as shown in Figure 2, which shines a red dot at the
lens center of CAM B. We then adjust the angle of the beam-
splitter so that when looking through beam-splitter from D,
the red dot passes through the lens center of CAM A. We
photograph a color chart with each camera and compute a
color correction matrix to match the color rendition of the
image pairs, which may be different owing to different light
transport phenomena of the different lenses of CAM A and
CAM B. We also captured a checker board image for each
camera immediately after each subject photograph, which
we used for per-pixel alignment of the image pairs, achieved
via a similarity transformation.
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Figure 3. Illustration of camera perspective projection.


4. Distance Estimation in log-space
In Figure 3, p(x, y, z) is one point of a 3D object, and


(u, v) is the corresponding pixel location of p projected on
the image plane. The equation of perspective projection of
u is as below (v is similar):


u = x · f/z (1)


When only the camera-to-subject distance of the point
p is varied, this is equivalent to a change only in z. The
derivative of u with respect to z is as below:


du
dz


= (−x · f) 1
z2


= C1 ·
1


z2


(2)


In which C1 = (−x · f) is a constant. The pixel loca-
tion change caused by varying camera-to-subject distance is
therefore non-linear. However, to use uniform sampling in
our distance prediction network, a linear space is preferable.
Thus we consider a log-space mapping instead. Equation 1
now becomes:


log(u) = log(x · f/z)
= log(x · f)− log(z)


= C2 − log(z)


(3)


In Equation 3, C2 is a constant and log(u) is a linear
mapping of log(z), which means that in log-space, the per-
spective projection is a linear mapping of camera-to-subject
distances. Thus in our distance estimation network, we
adopt log-space instead of directly using of the actual dis-
tances.







5. 35mm Equivalent Focal Length
The term “35mm equivalent focal length” of a digital or


film camera with an accompanying lens is the focal length
that would be required for a standard 35mm film camera to
achieve the same field of view. This standard film camera
was the most widely used type before the digital camera rev-
olution. Now that a variety of imaging sensor sizes are com-
monly available in digital cameras, the focal length alone
does not determine the field-of-view. Hence, this canoni-
cal reference helps photographers standardize their field-of-
view understanding for different lenses and sensor combi-
nations. In our case, our canonical camera (at a distance of
1.6m)’s 35mm equivalent to a focal length is 128.4mm.


6. Conversion between Focal Length and Dis-
tances


To ensure that all portraits have the same framing (or,
stated differently, that the size of the subject’s head re-
mains the same as measured by the inter-pupillary distance),
when the camera-to-subject distance changes, then the focal
length of the camera should change proportionally. In our
case, the equation to convert a change in camera-to-subject
distance to a change in 35mm equivalent focal length is as
below:


f = D × 128.4mm/160cm (4)


In which D is the camera-to-subject distance, and f is
the corresponding 35mm equivalent focal length.
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Consistency of Undistortion Results. In Figure 1, al-
though the inputs are in different distortion magnitudes, our
results show consistency regarding the face proportion and
shapes of eyebrow, mouth and eyes.


Figure 1. Portrait undistortion in different distances. First and
Third rows are the input portraits with distortion. Second and
Forth rows are the results of our approach. From the left to the
right column: portraits taken at 23cm, 28cm, 32cm, 52cm, 85cm
and 118cm camera-to-subject distance.


More Results of in the wild Portraits. We show more
results of in-the-wild portraits in Figure 2.


Evaluation on CMDP dataset. We test our model with
102 photos (2 photos per individual with nearest distances
609.6mm and 914.4mm) from the CMDP dataset. We
achieve 95.12% accuracy on the distance label prediction
task. Figure 3 shows example results. As there is no ground
truth for quantitative evaluation for this dataset, we aligned
photos taken at 1820mm to show as references.


(a) (b) (c) (d) (e)


Figure 2. Evaluation and comparisons with Fried et al. [1] on var-
ious in-the-wild datasets. (a) inputs; (b) Fried et al. [1]; (c) Ours;
(d) Mixture of (a) and (b) for better visualization of undistortion;
(e) Mixture of (a) and (c).
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(a) (b) (c) (f)(e)(d)


Figure 3. Evaluations on CMDP. (a) and (d) are inputs; (b) and (e) are output from CompletionNet; (c) and (f) are references captured
around 1.82m.
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