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Abstract

In this supplementary material, we will provide some ad-
ditional experimental results, running speed analysis, and
possible future work.

1. Attribute Evaluation on OTB
The sequences in OTB-2015 [13] are annotated with

eleven attributes for further analyzing the performance of
trackers in different aspects. We select eight representa-
tive attributes 1 to further compare our fdKCF* with the
two groups of modern correlation filter based trackers (CF
trakcers) which are listed in our submitted paper.

Fig. 1 and Table 2 show the comparison of our fdKCF*
with the first group of CF trackers which can run at be-
yond 20fps. On all four criteria and eight representative
attributes, our fdKCF* significantly outperforms all other
real-time CF trackers by large margins.

Fig. 2 and Table 3 show the comparison of our fdKCF*
with the second group of CF trackers which produce state-
of-the-art localization accuracy but unnecessarily run at
real-time speeds. On the whole, the localization accuracy
of our fdKCF* is competitive with that of ECO [2] and re-
markably superior to other state-of-the-art CF trackers.

2. Qualitative Evaluation on OTB
Fig. 3 illustrates the tracking results of our fdKCF* and

five representative CF trackers, including MKCFup [11], E-
CO [2], BACF [5], SRDCF [3] and C-COT [4], on six hard
and very hard sequences [6] of OTB-2015. Our fdKCF* is
superior to other trackers.

3. Running Speed Analysis
We report the detailed running time of each main com-

ponent in our fdKCF* under the assumption thatH =W =

1deformation, fast motion, in-plane rotation, illumination variation, low
resolution, motion blur, out-of-plane rotation, and scale variation

Feature Extraction fCKM Gauss-Seidel for α∗

4ms 9ms 8ms

(a) Running time of Training.

Feature Extraction Recover w Calculate Response
15ms 3ms 8ms

(b) Running time of multi-scale detection with linear kernel.

Table 1: Running time of each component in our fdKCF*
with H =W = 60, h = w = 15, and C = 608.

60, h = w = 15 and C = 96 + 512 where the target size
and the search region size are 60×60 and 240×240, respec-
tively, the cell sizes of features are 4 × 4, and the channels
of shallow level features and deep features are 96 and 512,
respectively. In fact, according to the Implementation De-
tails of submitted paper, this is the assumption of maximum
target size and search region size and therefore the case of
slowest running speed. All tests are conducted on a single
TITAN X GPU. Notably, in the experiments of submitted
paper, fdKCF* employs the linear kernel.

Table 1 reports the results. It is seen from the table that
our fCKM consumes less in the total running time. In ad-
dition, according to the submitted paper, it is clear that the
running time of fCKM is still less (about 12ms) even though
the number of feature channels is up to 1024. These test-
s further confirm the following three facts. (i) Our fCKM
is efficient even though the high-dimensional deep features
are employed. (ii) The fps of our fdKCF* is almost inde-
pendent of the number of feature channels because all com-
ponents whose time-consuming is related to the number of
feature channels are efficient and are very little affected by
the number of feature channels. (iii) The training speed of
our fdKCF* is fast, i.e. about 20ms (including features ex-
traction) each frame in the slowest case.

4. Future Work
We present the possible future work to improve our fd-

KCF* from two aspects: discrimination power and localiza-



tion accuracy.

4.1. Discrimination Power

It is well known that the classic CF tracker ECO [2] em-
ploys many techniques and tricks including adding hand-
crafted features, sparse updating, and feature dimension re-
ducing to improve the discrimination power and running
speed of its baseline tracker C-COT [4]. The efficient track-
ing framework of our novel fdKCF* is fundamentally dif-
ferent from that of C-COT, and the running speed of our
fdKCF* is about 80 times that of C-COT in the case of as
fair a comparison as possible. We believe that most of the
same ideas above to improve the discrimination power of
C-COT in ECO can also be applied to our efficient fdKCF*
to improve it further.

In addition to the above, there are a lot of improve-
ments based on KCF [8] to improve its discrimination pow-
er in recent years, such as CFWCR [7], MCCT [12], MKC-
Fup [11], and the winner of recent VOT2018 challenges [9],
LADCF [14], are also based on KCF. All these trackers em-
ploy FFT to accelerate its computation resulting in the neg-
ative boundary effect. And there is no one which can run in
real-time speed when both relaxing the boundary effect and
employing the high-dimensional deep features are executed
at the same time. On the contrary, our novel fdKCF* em-
ploy the proposed fCKM to accelerate its computation in s-
patial domain without the boundary effect. And it can run at
real-time when the high-dimensional deep features are em-
ployed. Therefore, we believe that most of the same ideas
above to improve the discrimination power of KCF can also
be applied to our efficient fdKCF* to improve it further, and
the resulting trackers are probably more efficient and more
robust than their original KCF based ones.

4.2. Localization Accuracy

Recently, bounding box regression based methods have
been widely used to refine the raw tracking results of base
trackers in visual object tracking. Typically, SiamRPN [10],
DaSiamRPN [15], and ATOM [1] achieve high localization
accuracy on public datasets, although the robustness and
the discrimination power of their base trackers are relatively
poor compared to other state-of-the-art trackers.

Our fdKCF* does not resort to the bounding box regres-
sion based methods to refine its tracking results in our cur-
rent implementation. Thanks to ATOM [1] which proposes
an efficient and general bounding box regression method to
visual object tracking, and it can be employed in our fd-
KCF* to improve its localization accuracy without obsta-
cles. It is worth noting that when ATOM is employed, our
fdKCF* does not need to perform multi-scale detection, and
its single-scale detection version can run at beyond 60 fps.
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fdKCF* BACF ECO-HC MKCFup DSST Staple CFNet LCT
mOP 0.752 0.711 0.735 0.615 0.519 0.643 0.603 0.579
mPN 0.767 0.716 0.701 0.609 0.511 0.670 0.596 0.615

(a) Deformation.

fdKCF* BACF ECO-HC MKCFup DSST Staple CFNet LCT
mOP 0.834 0.767 0.761 0.622 0.545 0.624 0.703 0.614
mPN 0.798 0.747 0.748 0.607 0.530 0.644 0.707 0.643

(b) Fast Motion.

fdKCF* BACF ECO-HC MKCFup DSST Staple CFNet LCT
mOP 0.797 0.714 0.691 0.641 0.612 0.653 0.731 0.641
mPN 0.787 0.719 0.670 0.641 0.620 0.679 0.735 0.696

(c) In-Plane Rotation.

fdKCF* BACF ECO-HC MKCFup DSST Staple CFNet LCT
mOP 0.856 0.806 0.786 0.691 0.665 0.699 0.704 0.608
mPN 0.847 0.787 0.747 0.681 0.664 0.719 0.704 0.674

(d) Illumination Variation.

fdKCF* BACF ECO-HC MKCFup DSST Staple CFNet LCT
mOP 0.830 0.650 0.596 0.631 0.420 0.461 0.777 0.293
mPN 0.801 0.648 0.635 0.615 0.549 0.572 0.766 0.455

(e) Low Resolution.

fdKCF* BACF ECO-HC MKCFup DSST Staple CFNet LCT
mOP 0.850 0.742 0.778 0.624 0.562 0.622 0.703 0.638
mPN 0.833 0.736 0.754 0.617 0.548 0.639 0.699 0.641

(f) Motion Blur.

fdKCF* BACF ECO-HC MKCFup DSST Staple CFNet LCT
mOP 0.804 0.722 0.742 0.646 0.573 0.636 0.696 0.612
mPN 0.793 0.717 0.715 0.643 0.567 0.654 0.687 0.661

(g) Out-of-Plane Rotation.

fdKCF* BACF ECO-HC MKCFup DSST Staple CFNet LCT
mOP 0.804 0.704 0.725 0.588 0.551 0.607 0.687 0.475
mPN 0.824 0.716 0.730 0.608 0.594 0.676 0.703 0.596

(h) Scale Variation.

Table 2: The mean OP (mOP) and mean Pnorm@0.2 (mPN) of our fdKCF* and seven modern real-time CF trackers on eight
representative attributes of OTB-2015. The best three results are shown in red, blue, and magenta, respectively. fdKCF*
outperforms all other real-time CF trackers by large margins on all attributes.

fdKCF* ECO GPRT C-COT deep SRDCF decon HCF
mOP 0.752 0.773 0.732 0.742 0.670 0.667 0.660 0.604
mPN 0.767 0.753 0.738 0.741 0.670 0.651 0.664 0.680

(a) Deformation.

fdKCF* ECO GPRT C-COT deep SRDCF decon HCF
mOP 0.834 0.808 0.726 0.796 0.735 0.718 0.712 0.669
mPN 0.798 0.778 0.724 0.777 0.709 0.694 0.701 0.740

(b) Fast Motion.

fdKCF* ECO GPRT C-COT deep SRDCF decon HCF
mOP 0.797 0.794 0.739 0.742 0.702 0.662 0.682 0.673
mPN 0.787 0.773 0.736 0.737 0.694 0.649 0.678 0.735

(c) In-Plane Rotation.

fdKCF* ECO GPRT C-COT deep SRDCF decon HCF
mOP 0.856 0.856 0.784 0.805 0.719 0.742 0.771 0.632
mPN 0.847 0.836 0.783 0.779 0.702 0.708 0.753 0.727

(d) Illumination Variation.

fdKCF* ECO GPRT C-COT deep SRDCF decon HCF
mOP 0.830 0.720 0.679 0.751 0.719 0.684 0.682 0.331
mPN 0.801 0.721 0.686 0.759 0.696 0.675 0.669 0.501

(e) Low Resolution.

fdKCF* ECO GPRT C-COT deep SRDCF decon HCF
mOP 0.850 0.848 0.784 0.843 0.754 0.730 0.770 0.700
mPN 0.833 0.824 0.769 0.818 0.732 0.706 0.751 0.748

(f) Motion Blur.

fdKCF* ECO GPRT C-COT deep SRDCF decon HCF
mOP 0.804 0.819 0.765 0.783 0.726 0.664 0.708 0.637
mPN 0.793 0.787 0.763 0.760 0.706 0.640 0.695 0.701

(g) Out-of-Plane Rotation.

fdKCF* ECO GPRT C-COT deep SRDCF decon HCF
mOP 0.804 0.808 0.734 0.788 0.732 0.670 0.737 0.518
mPN 0.824 0.807 0.760 0.797 0.743 0.671 0.745 0.670

(h) Scale Variation.

Table 3: The mean OP (mOP) and mean Pnorm@0.2 (mPN) of our fdKCF* and seven modern CF trackers that produce
state-of-the-art localization accuracy on eight representative attributes of OTB-2015. The best three results are shown in red,
blue, and magenta, respectively. fdKCF* outperforms other state-of-the-art trackers on most attributes.

temporal consistency preserving spatial feature selection for
robust visual object tracking. IEEE Transactions on Image

Processing, 2019.

[15] Zheng Zhu, Qiang Wang, Bo Li, Wei Wu, Junjie Yan, and
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Figure 1: The mean precision and success plots of our fdKCF* and seven modern real-time CF trackers on eight representative
attributes of OTB-2015. The mean distance precisions and AUCs are reported in the legends. fdKCF* outperforms all other
real-time CF trackers by large margins on all attributes.

Weiming Hu. Distractor-aware siamese networks for visual
object tracking. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 101–117, 2018.
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Success Plot on In-Plane Rotation

ECO [0.654]
fdKCF* [0.652]
C-COT [0.626]
GPRT [0.609]
deepSRDCF [0.586]
HCF [0.573]
SRDCFdecon [0.571]
SRDCF [0.551]

0 5 10 15 20 25 30 35 40 45 50
Center Error Threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

D
is

ta
nc

e 
P

re
ci

si
on

Precision Plot on Illumination Variation

fdKCF* [0.896]
ECO [0.888]
C-COT [0.858]
HCF [0.827]
GPRT [0.816]
SRDCFdecon [0.809]
SRDCF [0.783]
deepSRDCF [0.763]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Overlap Threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

O
ve

rla
p 

P
re

ci
si

on

Success Plot on Illumination Variation

ECO [0.712]
fdKCF* [0.694]
C-COT [0.680]
GPRT [0.648]
SRDCFdecon [0.645]
SRDCF [0.620]
deepSRDCF [0.617]
HCF [0.558]

0 5 10 15 20 25 30 35 40 45 50
Center Error Threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

D
is

ta
nc

e 
P

re
ci

si
on

Precision Plot on Low Resolution
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Figure 2: The mean precision and success plots of our fdKCF* and seven modern CF trackers that produce state-of-the-art
localization accuracy on eight representative attributes of OTB-2015. The mean distance precisions and AUCs are reported
in the legends. On the whole, fdKCF* is competitive with ECO and remarkably superior to other state-of-the-art CF trackers.
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Figure 3: Qualitative comparison of our fdKCF* and five representative CF trackers, MKCFup, ECO, BACF, SRDCF and
C-COT, on six hard and very hard sequences [6] of OTB-2015. They are MotorRolling, Biker, Box, Freeman4, Diving, and
Skiing from the top down. Our fdKCF* is superior to other trackers.


