
Appendix: An Empirical Study of Spatial Attention Mechanisms in Deep

Networks

Xizhou Zhu1,2†∗ Dazhi Cheng2†∗ Zheng Zhang2∗ Stephen Lin2 Jifeng Dai2

1University of Science and Technology of China
2Microsoft Research Asia

ezra0408@mail.ustc.edu.cn

{v-dachen,zhez,stevelin,jifdai}@microsoft.com

Incorporating attention modules into deep networks

For the object detection and semantic segmentation

tasks, ResNet-50 [3] is chosen as the backbone and just the

self-attention mechanism is involved. The Transformer at-

tention module is incorporated by applying it on the 3 × 3

convolution output in the residual block. For insertion into

a pre-trained model without breaking the initial behavior,

the Transformer attention module includes a residual con-

nection, and its output is multiplied by a learnable scalar

initialized to zero, as in [9]. The manner of incorporating

dynamic convolution is the same. To exploit deformable

convolution, the 3 × 3 regular convolution in the residual

block is replaced by its deformable counterpart. The result-

ing architecture is called “Attended Residual Block”, shown

in Figure 2 (a).

In the neuron machine translation (NMT) task, the net-

work architecture follows the Transformer base model [8],

where both self-attention and encoder-decoder attention

mechanisms are involved. Different from the original paper,

we update the absolute position embedding in the Trans-

former attention module by the latest relative position ver-

sion as in Eq. 2. Because both deformable convolution

and dynamic convolution capture self-attention, they are

added to only the blocks capturing self-attention in Trans-

former. For dynamic convolution, we replace the Trans-

former attention module by dynamic convolution directly,

as in [10]. The architecture is shown in Figure 2 (b). For

its deformable convolution counterpart, because the Trans-

former model does not utilize any spatial convolution (with

kernel size larger than 1), we insert the deformable convo-

lution unit (with kernel size of 3) prior to the input of the

Transformer attention module. The resulting architecture is

called “Transformer + Deformable”, shown in Figure 2 (c).

∗Equal contribution. †This work was done when Xizhou Zhu and Dazhi

Cheng were interns at Microsoft Research Asia.

Experimental settings

For the object detection task, experiments are imple-

mented based on the open source mmdetection [1] code

base. Anchors of 5 scales and 3 aspect ratios are utilized. 2k

and 1k region proposals are generated at a non-maximum

suppression threshold of 0.7 at training and inference re-

spectively. In SGD training, 256 anchor boxes (of positive-

negative ratio 1:1) and 512 region proposals (of positive-

negative ratio 1:3) are sampled for backpropagating their

gradients. In our experiments, the networks are trained on

8 GPUs with 2 images per GPU for 12 epochs. The learn-

ing rate is initialized to 0.02 and is divided by 10 at the 8-th

and the 11-th epochs. The weight decay and the momentum

parameters are set to 10
−4 and 0.9, respectively.

For the semantic segmentation task, in SGD training, the

training images are augmented by randomly scaling (from

0.7 to 2.0), randomly cropping (size of 769 × 769 pix-

els) and random flipping horizontally. The hyper param-

eter setting follows [4]. In our experiments, the networks

are trained on 8 GPUs with 1 image per GPU for 60k

iterations. The “poly” learning rate policy is employed,

where the initial learning rate is set as 0.005 and multi-

plied by
(

1 −
iter

itermax

)0.9
. Synchronized Batch Normaliza-

tion [6] is placed after every newly added layer with learn-

able weights. The weight decay and the momentum param-

eters are set as 10−4 and 0.9, respectively.

For the neuron machine translation (NMT) task, we use

the fairseq [2] code base for our experiments. The hyper

parameters follows the original setting in [8]. We used

the Adam optimizer [5] with β1 = 0.9, β2 = 0.98 and

ǫ = 10
−9. In our experiments, the networks are trained

on 8 GPUs for 100k iterations. Each training batch con-

tained a set of sentence pairs containing approximately 30k

source tokens and 30k target tokens. The initial learn-

ing rate is set as 10
−7 and linearly increased to 0.001 af-

ter iterwarmup = 4000 iterations, and then multiplied by

1



iter
iterwarmup

−0.5

. No weight decay is adopted. During training,

label smoothing [7] of value 0.1 is employed.

References

[1] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaox-

iao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jianping

Shi, Wanli Ouyang, Chen Change Loy, and Dahua Lin.

mmdetection. https://github.com/open-mmlab/

mmdetection, 2018. 1

[2] Sergey Edunov, Myle Ott, and Sam Gross. fairseq. https:

//github.com/pytorch/fairseq, 2017. 1

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 1

[4] Zilong Huang, Xinggang Wang, Lichao Huang, Chang

Huang, Yunchao Wei, and Wenyu Liu. Ccnet: Criss-

cross attention for semantic segmentation. arXiv preprint

arXiv:1811.11721, 2018. 1

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 1

[6] Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu

Zhang, Kai Jia, Gang Yu, and Jian Sun. Megdet: A large

mini-batch object detector. In CVPR, 2018. 1

[7] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception archi-

tecture for computer vision. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

2818–2826, 2016. 2

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NIPS, 2017. 1

[9] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In CVPR, 2018. 1

[10] Felix Wu, Angela Fan, Alexei Baevski, Yann N Dauphin,

and Michael Auli. Pay less attention with lightweight and dy-

namic convolutions. arXiv preprint arXiv:1901.10430, 2019.

1

https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmdetection
https://github.com/pytorch/fairseq
https://github.com/pytorch/fairseq

