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1 Training details
As is suggested by I. Goodfellow et al.[4], instead of training G to minimize log(1−D(G(x, y))), in practice,
we try to maximize logD(G(x, y)). This is because in early stage of learning, log(1 − D(G(x, y))) tends to
saturate. This revision on objective provides much stronger gradients early in learning.

We also consider the other two variants of the adversarial objectives in recent works, i.e. WGAN [2] and
LSGAN [7], to stabilize our training. Particularly, for the WGAN based objectives, we train the G to minimize
−D(G(x, y)), and train the D to maximize D(y) − D(G(x, y)). For the LSGAN based objectives, we train
the G to minimize (D(G(x, y))− 1)2, and train the D to minimize (D(y)− 1)2 +D(G(x, y))2. In these two
cases, the sigmoid function at the last layer of D is removed so that to produce logits rather than probabilities.

2 Dataset
The statistics of our dataset are given in Table 1.

Image Info.
# total imgs 1,209
source GaoFen-1 PMS and WFV

training set

# imgs 681
# thin cloud imgs 81
# thick cloud imgs 404
# background imgs 196

testing set

# imgs 528
# thin cloud imgs 81
# thick cloud imgs 391
# background imgs 56

Table 1: A summary of our experimental dataset.

3 Implementation details of our baseline model
In our ablation studies, we compare our method with a baseline model that is trained without any help of
the adversarial training. As there is no ground truth value for cloud reflectance and attenuation, we manually
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synthesize a set of images and corresponding ground truth references.
Specifically, the thick clouds images (where α ≈ 1) and background images (with no clouds, where α ≈ 0)

in our training set are used to generate the synthesized images and their ground truth maps. We use the image
regions that completely covered by thick clouds as the “ground truth” cloud reflectance of synthesized images.
Then, the synthetic image can be generated by simply performing a linear combination between the clouds and
a clear background image, where a random alpha value is used as the combination weights.

4 Configurations of our Networks
Table 2 lists the detailed configurations of our cloud generator G and our cloud discriminator D. Table 3 lists
the detailed configurations of our cloud matting network F .

The column “Filters” gives the configuration of the convolutional filters, where n×n/m corresponds to the
size (n×n) and number of filters (m). “C(2) P” represents two “stacked convolution layers” followed by a pool-
ing layer. “U” represents an up-sampling layer with bi-linear interpolation. “DC” represents a fractional-strided
convolution layer [14] (a.k.a. the transposed convolution) for up-sampling the feature maps. “|” represents
feature fusion by concating two feature maps. “+” represents feature fusion by element-wise summation.

Layer Input Stride Filters

G
en

er
at

or

C(2) P 1 image 2 3x3 / 64
C(2) P 2 C(2) P 1 2 3x3 / 64
C(2) P 3 C(2) P 2 2 3x3 / 64
C(2) P 4 C(2) P 3 2 3x3 / 64
C(2) U 5 C(2) P 4 1/2 5x5 / 64
C(2) U 6 C(2) U 5 + C(2) P 3 1/2 5x5 / 64
C(2) U 7 C(2) U 6 + C(2) P 2 1/2 5x5 / 64
C(2) U 8 C(2) U 7 + C(2) P 1 1/2 5x5 / 64
C(1) 9 C(2) U 8 1 5x5 / 3

D
is

cr
im

in
at

or

C(2) P 1 image 2 3x3 / 128
C(2) P 2 C(2) P 1 2 3x3 / 256
C(2) P 3 C(2) P 2 2 3x3 / 256
C(2) P 4 C(2) P 3 2 3x3 / 256
C(2) P 5 C(2) P 4 2 3x3 / 256
FC 1 C(2) P 6 - - / 512
FC 2 FC 1 - - / 1

Table 2: Detailed configuration of our cloud generator G and our cloud discriminator D.
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Layer Input Stride Filters
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C(2) 1 image 1 3x3 / 64
P C(2) 2 C(2) 1 2 3x3 / 128
P C(2) 3 P C(2) 2 2 3x3 / 256
P C(2) 4 P C(2) 3 2 3x3 / 512
P C(2) 5 P C(2) 4 2 3x3 / 1024
DC 1 P C(2) 5 1/2 3x3 / 512
C(2) 6 DC 1 | P C(2) 4 1 3x3 / 512
DC 2 C(2) 6 1/2 3x3 / 256
C(2) 7 DC 2 | P C(2) 3 1 3x3 / 256
DC 3 C(2) 7 1/2 3x3 / 128
C(2) 8 DC 3 | P C(2) 2 1 3x3 / 128
DC 4 C(2) 8 1/2 3x3 / 64
C(2) 9 DC 4 | P C(2) 1 1 3x3 / 64
C(1) 10 C(2) 9 1 3x3 / 3

Table 3: A detailed configuration of our cloud matting network F .

5 Is the cloud matting network F necessary?
As our cloud generator G and our matting networks are all built based on the same physical imaging model,
a natural question would be, is the cloud matting network F necessary? or can we replace the F with the G?
The answer is “no”. We cannot remove F or replace F with G. This is because the G does not simply play a
“copy-and-paste” role for clouds in our method. Instead, it may also modify the cloud’s shape and transparency
based on its “own will”. Fig. 1 gives an example of why G-only cannot be used for cloud detection.

Figure 1: Left to right: G’s input, generated cloud reflectance, and re-composed cloud image. Note that the
cloud has been modified by G and thus cannot be used as the final detection output.

6 Limitations
one of our limitations is when dealing with the snow-covered regions, especially when the snow presents high
reflectance. Fig. 2 shows a failure case of our method.
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Figure 2: A failure case of our method: cloud detection in a snow-covered area. Left: input; Right: predicted
cloud reflectance.
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Figure 3: Some examples of the cloud detection results of different methods, where Scene Learning [1],
FCN+Cls [15], and Progress-Refine [16] are recent published cloud detection methods. Deeplab-v3 [3] and
UNet [11] are well-known semantic segmentation methods.
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Figure 4: Some example results of the thin cloud removal, where Homomorphic Filter [6] is a classical cloud
removal method, Deformed-Haze [9] and Adaptive Removal [13] are two recent proposed cloud removal meth-
ods.
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Figure 5: Some examples of “cloud augmentation” on high-resolution Google Earth images. Input images are
from DOTA dataset [12] and Massachusetts Roads/Building Dataset [8].
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Figure 6: Some examples of generated cloud images by our method: (a) 1st training epoch, (b) 2nd training
epoch, (c) 6th-10th training epoch. Samples are fair random draws, not cherry-picked.
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Figure 7: The object detection results on the occluded target detection dataset [10] with RetinaNet detector [5]:
(a) detection results trained with cloud augmentation and (b) without cloud augmentation.
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