
Re-Identification of Zebrafish using Metric Learning

Joakim Bruslund Haurum∗ Anastasija Karpova∗

Malte Pedersen Stefan Hein Bengtson Thomas B. Moeslund

Visual Analysis of People (VAP) Laboratory, Aalborg University, Denmark

{joha,mape,shbe,tbm}@create.aau.dk, akkarpova@gmail.com

Abstract

Zebrafish are widely used for drug development and

behavioral pattern studies. The currently employed ze-

brafish re-identification methods rely solely on top-view and

grayscale images which require a significant amount of an-

notated data in order to perform well. In this paper, for

the first time, we perform zebrafish re-identification using

RGB images recorded from a side-view perspective, while

keeping the amount of data annotation to a minimum. In-

spired by the person re-identification field, two feature de-

scriptors are tested, each encoding both color and texture

information, and five metric and subspace learning meth-

ods. The contribution of the color and texture components

of the feature descriptors were also investigated. We present

and evaluate on a novel publicly available dataset of six ze-

brafish, recorded in a laboratory setup. The results show

that a mean average precision of 99% can be achieved by

using just 15 annotated samples per fish. This approach

shows a clear potential for incorporating the side-view in-

formation in the field of zebrafish tracking, as well as a clear

argument for utilizing the color information of the zebrafish.

1. Introduction

The zebrafish (Danio rerio) has for many years been

used as a vertebrate model organism by biologists. This

has been due to a major effort in screening the zebrafish

genomes [11, 16] and their transparent body during early

development, allowing non-obtrusive observation of the

subjects [17]. Due to these properties zebrafish have been

used to study the effect of drugs [14], complex brain dis-

orders [20], and more. The zebrafish is also a highly so-

cial animal, reflected in the shoaling behaviour observed

under various conditions [32], which affects the proximity

between the fish, and the direction and speed of the indi-

vidual fish. In order to properly analyze these results, it is

∗Equal contribution

Figure 1: Illustration of the dataset capture setup. The

equipment size and distances are not to scale.

necessary to track each unique fish over time. This is, how-

ever, an incredible difficult task as the zebrafish behave in an

impulsive and unpredictable way when stressed or anxious

[10]. Therefore, zebrafish have traditionally been tracked

manually by the researchers [22, 30, 33].

In recent years there has, however, been a growing ef-

fort in creating automated zebrafish tracking systems. Sys-

tems such as the idTracker [38, 45] have been widely used

in research, and several commercial systems are being sold

[28, 34, 49, 50]. These tracking systems are constrained to

only observe the fish in approximated 2D planes. There-

fore, they only allow the fish to swim in very shallow water,

which severely limits the movement of the fish. This is a

major problem, as MacRı́ et al. [29] found that conclud-

ing on zebrafish behaviors determined from 2D data is not

representative of the actual zebrafish behavior. Compara-

tively, utilizing 3D data in order to conclude on zebrafish

behavior provides much more reliable results. Tracking ze-

brafish in 3D is, however, a much more difficult task due to

an increase in occlusions, variety of body poses, and more.

This leads to less stable tracking and thereby more track-
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lets, which subsequently needs to be combined. One way

to combine these tracklets would be through re-identifying

the zebrafish in the tracklets, assuming the tracklets do not

contain identity swaps. This approach has been applied

from a top-view perspective [9, 38, 45, 54, 59], but never

from a side-view perspective, due to the perceived increase

in occlusions leading to a more difficult tracking problem.

Furthermore, the color information has not been utilized by

any of the current methods, representing an uncharted area

within the field. Lastly, there is a distinct lack in public

ground truth annotated data within the field, making it ex-

ceedingly hard to compare methods. Therefore, our contri-

butions are the following:

• Demonstrating that zebrafish can reliably be re-

identified in a side-view perspective.

• A publicly available side-view dataset of zebrafish,

with bounding box annotations, recorded in color, and

with temporally consistent IDs1.

• Open-source python implementations of the applied

re-identification methods and feature descriptors2.

2. Related Work

When attempting to track multiple objects over long du-

rations in non-trivial circumstances, it is often necessary to

handle occlusions by re-identifying and re-assigning the in-

volved objects. This is not a trivial task as illustrated by

the exponentially increasing number of re-identification pa-

pers accepted at major computer vision conferences over

the last decade [63]. Over the years the field of person re-

identification has heavily utilized the fields of feature engi-

neering, and metric and subspace learning. Through metric

and subspace learning it is possible to learn a set of transfor-

mations on the feature space, with the goal of minimizing

the intra-class distances while maximizing the inter-class

distances, by modelling the Mahalanobis matrix [7].

Weinberger and Saul [55] proposed an iterative approach

where a local perimeter is enforced for each sample wherein

only samples of the same class may be contained. Köstinger

et al. [21] proposed a simple approach based on the pairwise

difference for similar and dissimilar samples, called Keep It

Simple and Straightforward Metric (KISSME), from which

the Mahalanobis matrix could analytically be determined.

This approach was subsequently expanded on by Yang et al.

[61] and Liao et al. [23], who incorporated pairwise com-

monness and a subspace learning step, respectively. On the

other hand, Zhang et al. [62] applied a subspace learning

approach called Discriminative Null Space (DNS) to learn

1https://www.kaggle.com/aalborguniversity/aau-

zebrafish-reid
2https://www.bitbucket.org/aauvap/zebrafish-re-

identification

a heavily reduced feature subspace wherein the different

classes are well separated, by using non-linear transforma-

tion through a kernelization approach.

Convolutional Neural Networks (CNNs) have had a large

impact on the field, where they have been used to learn

feature extractors [56, 58] and end-to-end metric learning

[1, 5, 66]. In recent years the field has pivoted towards de-

veloping algorithms which adapts to never before seen ar-

eas. This has been done by utilizing one-shot learning [4],

Generative Adversarial Networks [25, 64], domain adap-

tation [48, 65], and weakly-supervised and unsupervised

methodologies [31, 60, 65].

While person re-identification has increased in popular-

ity the field of animal re-identification has not followed

an as rapidly increasing attention. In a recent review by

Schneider et al. [47] it is clear that animal re-identification

has a long history, dating back to 1990, exploring differ-

ent feature and machine learning based approaches on a

large variety of species. In recent years deep learning has

had a large impact on the field, leading to increased perfor-

mance and attention. Similarly, the introduction of publicly

available datasets and challenges such as the Caltech Cam-

era Traps [6] and the Humpback Whale Identification Chal-

lenge [19] have led to an increased interest in the field. The

produced technology has been widely used for species con-

servation and censusing, by incorporating citizen science to

help gather data [37], and developing initiatives such as the

Wildbook project [8] which has eased and improved the en-

tire conservation process immensely.

However, image-based re-identification has only been

seldom used in the field of zebrafish tracking. Several track-

ing systems have been proposed, with the majority of the

systems focusing on 2D tracking of zebrafish in shallow

water [38, 41, 42, 45, 51, 54, 59]. Only a relatively small

amount of work has been conducted in the attempt to create

reliable 3D tracking systems [2, 9, 27, 39, 40, 52, 53, 57].

Within all of these systems only five attempt to explicitly

model the appearance of the fish, and all from the top-view

camera. Cheng et al. [9, 59] applied an iterative unsuper-

vised method to train a CNN to re-identify the fish based

on head patches. Similarly, Wang et al. [54] applied a

CNN to re-identify zebrafish heads in a supervised man-

ner. Pérez-Escudero et al. [38] proposed an identification

method based on intensity and contrast maps in a system

called idTracker. Romero-Ferrero et al. [45] proposed a

new version of idTracker, where the identification step was

performed using a small classification CNN. In all cases the

utilized data has been recorded in grayscale from a top-view

camera, as to limit the number of occlusions. Everyone

tracks the zebrafish in 2D using a single top-view camera,

except Cheng et al. who tracks the fish in 3D using a triple

camera setup. The seemingly unique and contrasting stripes

of the zebrafish have therefore never been utilized. Sim-
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ilarly, there is a distinct lack in publicly available ground

truth annotated datasets, which makes it exceedingly hard

to compare methodologies, and we believe this may have

slowed down progress in the field when comparing to the

otherwise rapid progress within person re-identification.

3. Dataset

The dataset was recorded strictly from a side-view per-

spective in a laboratory environment. A sketch of the

laboratory dataset collection setup is shown in Figure 1.

The recorded dataset is intended specifically for the re-

identification task.

3.1. Experimental Setup

A 32× 32× 32 cm clear glass tank was used, with a wa-

ter depth of 10.5 cm, and a clear acrylic plate inserted 3.5
cm from the front. The divider plate was inserted in order

to limit the depth-wise movement of the zebrafish, forcing

the fish to swim at approximately the same distance from

the camera. The divider plate also forces the fish to swim

approximately perpendicular to the camera, by allowing the

fish to turn but not to swim towards or away from the cam-

era. Two Kino Diva-Lite 401-230 studio lamps with fluo-

rescent tube lights and a refresh rate of 40 kHz were used,

in order to avoid flicker when recording with a high shutter

speed and ensure a smooth lighting of the fish tank. The

lights were placed 90 cm from the tank at an approximate

45-degree angle. The lighting was diffused by placing the

fish tank in a photography tent, limiting the amount of over-

saturated highlights on the fish scales.

The videos were recorded in RGB using an IDS UI-

3070CP Rev. 2 camera and a KOWA LM16HC lens, with

a resolution of 2056 × 1542, a variable frame rate, expo-

sure time of 9.175 ms, and a manually set color balance.

The camera setup was placed 70 cm from the front of the

fish tank, perpendicular to the water level in the tank. The

KOWA lens was chosen in order to obtain a narrow field-

of-view, limiting the visibility of the sides of the tank and

thereby eliminating any reflections on the side of the tank.

3.2. Dataset Construction

A total of six unique zebrafish were recorded, each

shown in Figure 2. Due to the limited space of the tank, two

videos with three fish at a time were recorded, and com-

bined into a single dataset of 2224 images. Each recording

was manually annotated with bounding boxes and unique

consistent ids throughout the video, using the AAU VAP

Bounding Box Annotator software [3]. For each bounding

box it was denoted whether the fish was swimming to the

right or left, turning/swimming at an angle, or part of an oc-

clusion.

Figure 2: Still images of each of the 6 different zebrafish in

the recorded dataset.

4. Methodology

In order to determine the feasibility of re-identifying ze-

brafish from a side-view perspective, we investigate five an-

alytic metric and subspace-learning methods:

• Keep It Simple and Straightforward Metric (KISSME)

[21]

• Improved KISSME (iKISSME) [61]

• Large Scale Similarity Learning (LSSL) [61]
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(a) Initial fish patch (b) Segmented fish (c) Rotated onto x-axis (d) Flipped fish patch

Figure 3: An example of the applied pre-processing steps. First the fish BLOB is estimated, where after the BLOB is rotated

onto the x-axis, and lastly flipped if the fish head is in the left half of the image patch.

• Cross-view Quadratic Discriminant Analysis (XQDA)

[23]

• Kernelized Discriminative Null Space (DNS) [62]

As these methods require a pre-computed feature descriptor,

we also investigate two feature descriptors:

• Ensemble of Localized Features (ELF) [13, 56]

• Local Maximal Occurrence (LOMO) [23]

4.1. Pre­processing

It is assumed that the bounding box and direction of the

head of the fish have been determined a priori. As the fish

may swim in a diagonal fashion, the axis-aligned bounding

boxes can contain a lot of empty space, which provides no

relevant information. Furthermore, it is assumed that each

side of the fish is non-significantly different. Therefore, we

want to rotate the bounding boxes so all extracted fish are

approximately parallel to the x-axis. Subsequently, the im-

ages are flipped so that the head of the fish points in the

same direction in all the image patches. These steps are

shown in Figure 3 and performed as follows:

Based on the detected bounding box the fish is seg-

mented through a simply process of median background

subtraction, thresholding, and morphological opening and

closing. In case several objects are present within the

bounding box only the BLOB with the largest area is kept.

The angle of the zebrafish to the x-axis is determined by

computing the eigenvectors of the segmentation mask, and

rotating the eigenvector with the largest eigenvalue onto the

x-axis. The new bounding box is then determined, and the

image patch flipped if the fish head is pointing the wrong

way. Lastly, all extracted fish patches are resized into a sin-

gle consistent size.

4.2. Feature Descriptors

Two different feature descriptors from the person re-

identification field were utilized: ELF and LOMO. Both

descriptors consist of a color and texture component, and

constructs the descriptor based on a horizontal stripe analy-

sis approach.

4.2.1 ELF

The ELF feature descriptor is a simple descriptor con-

structed using several different color spaces and texture

response filters. The color component consists of RGB,

YCbCr, and HSV color spaces, however, as the Y and V

channels of the YCbCr and HSV color spaces are identical

only the Y channel is used, resulting in eight color chan-

nels. The texture component consists of the filter responses

on the Y channel when applying the Schmid [46] and Gabor

[12] filter banks, as well as calculating the standard Local

Binary Pattern [35, 36], resulting in 22 texture channels.

The final feature representation is created by splitting the

channels into six horizontal stripes of equal size, and for

each stripe represent each channel with an ℓ1 normalized

16-bin histogram. Per stripe all histograms are concate-

nated, and the final six stripe histogram vectors are con-

catenated into a single feature vector.

4.2.2 LOMO

The LOMO feature descriptor was developed in order to

provide a scale and pose invariant representation, as dif-

ferent poses had typically caused problems for person re-

identification tasks. This is achieved by utilizing an over-

lapping patch based approach, where for each patch a joint-

HSV histogram and a Scale Invariant Local Ternary Pat-

tern (SILTP) [24] histogram is calculated. In order to make

the feature descriptor scale invariant, a three-scaled pyramid

representation is constructed by applying a 2×2 mean filter

per step. In order to make the feature descriptor pose invari-

ant, each row of patches is analyzed and the “local maximal

occurrence” is determined by only selecting the largest bin

value across all patch histograms in the row.

All row histograms are concatenated, and subsequently

concatenated across the three scale steps. Finally, large val-

ues in the joint-HSV and SILTP histogram vectors are sup-

pressed using the log operator, the vectors are ℓ2 normalized

and concatenated into a single feature vector. In the origi-

nal implementation the multi-scale Retinex transformation

[18] was applied as a pre-processing step in order to match
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lighting and colors from different cameras. As we utilize a

single camera setup this transformation is not applied.

4.3. Metric Learning

A central problem for classification, ranking, and re-

identification problems is to determine whether two inputs

(e.g. two faces or two pedestrian images) are similar or not.

This can be done through distance metric or similarity mea-

sure between two feature representations. A distance metric

is a pairwise real-valued function with two d-dimensional

vectors, x and y, as input, that obeys the following condi-

tions [7]:

1. Non-negative: f(x,y) ≥ 0

2. Symmetric: f(x,y) = f(y,x)

3. Triangle inequality: f(x, z) ≤ f(x,y) + f(y, z)

4. Identity of indiscernibles: f(x,y) = 0 iff. x = y

The advantage of using metric learning is a joint opti-

mization of feature representation and the deciding metric.

One of the fundamental learned metrics is the Mahalanobis

metric, [7], which can be used to determine whether x and y

are from the same distribution, parameterized by the covari-

ance matrix Σ, see Equation 1. It should be noted that M

is often used as shorthand for Σ−1, and should be Positive

Semi-Definite (PSD) in order for the Mahalanobis metric,

dM, to be a pseudo-metric.

dM(x,y) =

√

(x− y)TΣ−1(x− y) (1)

The KISSME algorithm calculates M by modelling the

pairwise difference between similar and dissimilar points

as two separate zero-centered Gaussian distributions. M is

then simply determined as the difference of the inverse of

the computed covariance matrices.

Yang et al. [61] proposed the LSSL method, where a

similarity measure is computed by utilizing both the pair-

wise difference and commonness between similar and dis-

similar feature representations. Based on these properties

two matrices which parametrizes the similarity and dissim-

ilarity measures are constructed. Yang et al. also find that

the M used in the KISSME approach can be determined uti-

lizing only the pairwise difference between similar points,

leading to the iKISSME algorithm.

Liao et al. [23] expanded on the KISSME algorithm by

learning a transformation which projects the feature points

into a smaller subspace. This transformation is found by

solving the generalized eigenvalue decomposition problem

given the covariance matrices for the pairwise differences

for the similar and dissimilar points.

Zhang et al. [62] proposed a subspace learning algorithm

called DNS for the small sample size problem, which ap-

proaches the case where only k d-dimensional samples are

available per class and that k ≪ d. The goal of the DNS al-

gorithm is to find a subspace wherein the intra-class scatter

matrix is zero, while the inter-class scatter matrix is non-

zero. This is achieved by using the Null Foley-Sammon

Transformation [15], which finds a c − 1 dimensional sub-

space, where c is the number of classes considered. Within

this heavily reduced subspace the distance between samples

are simply calculated using the common ℓ2 distance. Zhang

et al. further developed a kernelized version of the algo-

rithm, which allows learning non-linear transformations of

the feature space by applying different kernels such as the

Radial Basis Function (RBF) kernel.

5. Experimental Results

The feature descriptors and metric learning methods de-

scribed in Section 4 are evaluated. Additionally, a baseline

performance is established by simply measuring the dis-

tance between feature vectors of the samples utilizing ℓ1, ℓ2,

and the cosine distances. The metric learning methods were

tested in two scenarios: with and without forcing the Maha-

lanobis matrix, M, onto the PSD cone. The DNS method

was tested with both the linear kernel and the RBF kernel.

Similarly, in order to determine the effect of the color and

texture components of the feature descriptors, three varia-

tions of the descriptors are investigated: the full descriptor

(LOMO / ELF), only the color components (LOMO-HSV

/ ELF-COLOR), and only the texture component (LOMO-

SILTP / ELF-TEXTURE). For all feature descriptors the in-

put data was rotated and flipped, so all fish bounding boxes

were parallel to the horizontal axis, with the head pointing

to the right.

5.1. Dataset Split and Evaluation Metrics

The methods were evaluated on the recorded dataset de-

scribed in Section 3, where a perfect fish detector is as-

sumed. The feature descriptions are therefore extracted

from the ground truth annotations, which have been resized

to the median bounding box size, 330 × 99. Therefore, the

extracted ELF feature descriptor is represented in a 2880

dimensional space, whereas the LOMO descriptor is repre-

sented in a 19546 dimensional space. The color informa-

tion is encoded in a 768 and 14848 dimensional subspace

for ELF and LOMO, respectively, whereas the texture in-

formation is encoded in a 2112 and 4698 dimensional sub-

spaces for ELF and LOMO, respectively. Cases where the

fish is turning or occluding each other are excluded. The

evaluation is cross-validated across ten random splits. The

splits were constructed so that each unique fish has an equal

number of samples. The fish with the least number of valid

annotations, given the previously imposed restrictions, de-

termines the size of the data splits. Therefore, each split

consists of 583 randomly selected bounding boxes per fish.

Per split 100 samples are selected per fish as the training
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Figure 4: mAP results for the PCA hyperparameter search across the relevant re-identification methods and baselines for

the two full feature descriptors, compared with the amount of explained variance kept during the PCA process. All tests are

performed with 100 training samples per fish, using three fish and 10-fold cross-validation. The baseline methods are plotted

with dashed lines.

set, leaving the remaining 483 samples as the testing set.

From the testing set a single sample per fish is selected as

the probe sample, leaving 482 gallery samples. The perfor-

mance of the methods is measured using the mean Average

Precision (mAP) metric. The classic Cumulative Matching

Criteria (CMC) metric is not utilized, as it does not reflect

the accuracy of the tested methods given several gallery

samples per id.

5.2. Hyperparameter Selection

For some of the investigated methods a set of hyperpa-

rameters needs to be considered. In order to simplify the

tests, the original parameters are used for each method, un-

less otherwise stated.

The KISSME, iKISSME, and LSSL methods all include

a matrix inversion step when computing M. In order to

make this process feasible given the large feature descrip-

tors used, it is necessary to apply some kind of dimension-

ality reduction. As in the original papers we apply Principal

Component Analysis (PCA). In order to determine the ex-

tent of the dimensionality reduction, the tradeoff between

accounted variance and mAP performance is considered.

This is evalauted over a subset of the full dataset, where only

three fish ids are used in ten different splits with 100 train-

ing features, and only comparing the full ELF and LOMO

descriptors. The effect on the mAP while increasing the

amount of explained variance from 1% to 100% in steps of

1% is measured. This is shown in Figure 4, where we also

plot the baseline methods performance using the PCA re-

duced feature descriptors. We find that only 60% and 95%

of the explained variance should be included for LOMO and

ELF, respectively, in order to obtain the peak mAP perfor-

mance.
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fish. The average mAP over 10-fold cross-validation is reported. Please note that the XQDA method is not included, as the

method did not manage to calculate a meaningful subspace transformation. The baseline methods are plotted with dashed

lines, and tested using both the full feature descriptors and the dimensionality reduced descriptors.

5.3. Effect of Training Set Size

As annotated data is often a scarce and expensive re-

source, it is of great interest to investigate the effect of the

training set size on the performance of the methods. There-

fore, we investigate the effect of the training set size by

evaluating all methods and feature descriptor combinations.

We conduct this test by evaluating the training set size from

the bare minimum of two to the maximum possible of 100.

For each increment an additional training feature per fish is

added to the previous set of features. The results are shown

in Figure 5, where each method is represented as the mean

mAP across the ten splits for each training set size. Please

note that the XQDA method is not included as the method

was never capable of finding a usable subspace from the

training data. The baselines are evaluated using both the

full and dimensionality reduced feature descriptors.

6. Discussion

From the results it is clear that all of the tested re-

identification methods are capable of achieving near perfect

results with just a small training set, as an mAP of 99% is

achieved using just 15 samples per fish. When comparing

with the baseline metrics it is also apparent that the feature

space transformations encoded in the Mahalanobis matrix

and learned subspace (for DNS) has a large effect, leading

to a 20-40 percentage points increase in mAP.

When examining the results, the DNS method consis-

tently performs better in terms of achieving a higher mAP

with less data. This is true for both the linear and RBF

versions of the algorithm. However, the linear version of

the DNS algorithm diverges when the training set size is

increased with the ELF feature descriptor. This may be re-

lated to the feature space being too non-linear, as the ELF

feature representation is encoded in a significantly smaller
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feature space when compared to the LOMO feature repre-

sentation.

When determining the effects of the different feature rep-

resentation components, it is obvious that the color compo-

nents have a much larger effect than the texture component.

This is somewhat surprising as one’s initial intuition would

expect the well-defined striped textures of the zebrafish to

be a major feature of the fish, as proven by the majority of

the work in the field being conducted on grayscale data. For

the ELF feature descriptor only the RBF kernelized DNS

algorithm manages an mAP over 60%, while the remain-

ing methods perform significantly worse, though still better

than the baseline methods. The effect is not as pronounced

for the texture component of LOMO, though the DNS al-

gorithm still consistently outperforms all of the other meth-

ods. The superior contribution of the color component is

similarly clear when looking at the baselines. The baselines

evaluated on just the color components of the feature de-

scriptors consistently outperforms not only the texture com-

ponents, but also the full feature descriptors, achieving an

mAP of 70-80% for the LOMO-HSV descriptor, and 50-

60% for the ELF-COLOR descriptor. While this effect can

also be seen to a small degree for some of the learned meth-

ods, it is much more pronounced for the baseline methods.

Furthermore, given a training set size of 20-30 samples per

fish it appears that the difference in performance between

using the full feature descriptor and only the color compo-

nent becomes negligible. Based on these observations a set

of conclusions can be made.

If the best performance is needed, the results indicate

that utilizing the LOMO-HSV feature descriptor with the

DNS algorithm with either of the two kernels gives the best

performance with the lowest amount of training data. How-

ever, the LOMO feature descriptor is more computationally

heavy to compute than the ELF descriptor, due to its com-

plex structure and detailed patch construction. The ELF de-

scriptor would therefore be favourable in time critical sys-

tems.

Similarly, since any kernelized method explicitly needs

the training data to be stored in order to calculate the test

data kernel matrix, the DNS algorithm may not be the best

choice for systems with low storage capabilities. In these

cases, an approximate performance can be achieved by us-

ing any of the metric learning based methods when using

LOMO, given a training set size of 20 or more samples per

fish. However, if ELF is used a small performance drop in

mAP is to be expected.

As mentioned earlier the required training set size to

reach an mAP of 99% is only 15 samples per fish. This

is on such a small scale that it would be reasonable to ask

experts, i.e. biologists, to manually annotate a small set of

images per fish. Similarly, it would be reasonable to ex-

pect that a tracker could produce a tracklet consisting of at

least 15 frames, from which the underlying model can be

calculated. Comparatively, if a CNN based approach was

used the required amount of annotated data would be much

higher, and may not necessarily generalize to the different

test environments. While the current methods do not gen-

eralize to new identities, they are quick to train, making the

lack of generalization non-significant. However, there is a

set of unanswered questions that should be considered.

Currently, a detector is assumed which provides perfect

annotations of fish that are swimming perpendicular to the

camera. Furthermore, the fish are currently forced to swim

within a small plane of water, limiting the light scattering

effect through the water. It is therefore of great interest to

study how these methods work when provided with feature

descriptors extracted from imperfect bounding box detec-

tions from modern detection networks such as YOLO [43],

Faster-RCNN [44], or SSD [26], and how well the meth-

ods perform when color distortions and reduction of detail

is introduced by letting the fish swim in three dimensions.

7. Conclusion

In this work we have addressed how methods from the

person re-identification field can be used in order to reli-

ably re-identify zebrafish. A novel RGB dataset with six

zebrafish was recorded in a lab environment using a single

side-view camera setup, where the fish were constrained to

swim within a 3.5 cm plane at the front of the tank. Based

on the recorded dataset two feature descriptors and five an-

alytic metric and subspace learning methods are compared

under varying training set sizes. The test is conducted with

10-fold cross-validation, and the results indicate that it is

possible to achieve a mean Average Precision (mAP) of

99% with just 15 training samples per class that. Further-

more, in-depth analysis of the feature descriptors shows that

the main contributor to the recognition performance is the

color component, and not the texture component. The re-

sults further indicate that by just using the color component,

a higher mAP value can be achieved using less training data

when compared with the full feature descriptors. This is

in stark contrast to the traditional approach within zebrafish

tracking where color information is discarded during data

acquisition. These results clearly indicate that there is valu-

able information to be utilized from the side-view perspec-

tive which is currently rarely used, and that the color infor-

mation should not simply be discarded, unlike the current

practice. In the future it would be of great interest to inves-

tigate how the applied re-identification methods work in a

full 3D tracking system, where the assumptions of perfect

bounding box detections and lack of color distortions from

the water are not met. Similarly, it would be interesting to

investigate whether the investigated re-identification meth-

ods are capable of re-identifying the same fish across data

recorded at different days.
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