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Abstract

Meta-learning techniques based on neural architecture

search (NAS) show excellent performance in the design of

learning models used in deep neural networks. In partic-

ular, when NAS is applied to design a convolutional neu-

ral network (CNN) for image recognition, the performance

of the network when evaluating public benchmark datasets

such as CIFAR10 and ImageNet exceeds that of hand-

designed models. Nevertheless, there are very few cases

wherein NAS has been applied to real-world problems, i.e.

recognition problems with a limited dataset. We proposed a

method in which the NAS technique does not require a proxy

task for the scene text recognition (STR) framework to apply

the NAS method to a new image recognition field. Therefore,

we proposed an architecture space for CNN-based mod-

ules in the STR framework and applied the ProxylessNAS

method, enabling end-to-end training while meta learners

design a new model that requires only a single commonly

used GPU (approximately 100 GPU hours). To evaluate the

STR model obtained by the proposed NAS method, seven

STR benchmark datasets were used. Finally, the obtained

model could achieve a performance similar to that of the

ideal model in terms of accuracy and number of parame-

ters. We thus confirm that the model design based on NAS

can be effectively applied to STR scenarios.

1. Introduction

Recently, owing to the neural architecture search (NAS),

there has been a significant change in the design procedure

of recognition models based on deep neural networks. The

NAS defines an architecture space, which is a set of op-

erations and parameters, that can operate efficiently for a

specific task, instead of designing building blocks of the

network or creating its architectural structures based on

intuition and experience. NAS then automatically builds

the model according to architectural space, specific search
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Figure 1. STR framework proposed by neural architecture

search (NAS). Red boxes present the architecture space for CNNs

to apply NAS without any proxy task.

strategies, and evaluation metrics. In the early stages of

NAS research, it was mainly limited to a few tasks such

as image classification and language modeling with small

datasets [37, 38]. The application field of the method is,

however, expanding to object detection, semantic segmenta-

tion model design, and training with large-scale data [17, 8].

The architecture search techniques proposed at the be-

ginning of NAS were mainly based on reinforcement learn-

ing or evolutionary algorithms, requiring a large computing

power to search all spaces [37]. The final model obtained

with the NAS was able to achieve a performance compara-

ble to the network designed by humans; however, it could

not be applied to large-scale data as the training time to eval-

uate one candidate model was too extensive. After the opti-

mal structure was generated for proxy tasks, the architecture

search for large-scale datasets was achieved by repeatedly

stacking some structures of the proxy model in a dataset of

similar nature. Nevertheless, the architecture search, which

requires a long processing time to be completed, still faces

problems when being applied to practical application.

Recent algorithms, such as ENAS [24], One-Shot [3],

DARTS [19], and ProxlessNAS [5] however, have been pro-

posed to dramatically reduce the search cost of the architec-

ture space or optimize the search without any proxy dataset.
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Based on these methods, the computing power of the search

is reduced, enabling real-world applications, and achiev-

ing the high accuracy for various public datasets. Despite

these developments, NAS-based models target applications

in only limited domains. As a result, the performance of

most of them is evaluated merely on representative datasets

of image classification and language modeling. To over-

come this problem, NAS has been studied in various appli-

cations, such as object detection [8], semantic segmentation

[17], and medical image segmentation [36, 35]; however,

there is still a need to utilize NAS techniques in more real-

world scenarios.

To extend the field of application of the NAS-based

model design, we propose a NAS methodology for a scene

text recognition (STR) case, one of the typical applications

of computer vision. STR is an extension of optical character

recognition (OCR) and is used to recognize text sequences

in natural images. The framework based on deep learning

networks for STR consists of four steps. The procedure

consists of a transformation stage, in which the deforma-

tion of the text in the input image is minimized, feature ex-

traction stage, for extracting features associated with char-

acters from a rectified image, a sequence modeling stage,

for obtaining contextual information from the extracted im-

age features, and prediction stage, to recognize the sequence

features.

We define the architecture spaces for CNN-based mod-

ules to be applied to the transformation and feature extrac-

tion stages in the design of the deep neural network mod-

ules for STR, which are capable of end-to-end training, to

apply NAS techniques. Figure 1 shows the pipeline of our

NAS-based STR framework. For each CNN module, spe-

cific search, in which each architecture space is defined, and

a gradient-based search are used. Both methods do not de-

pend on any proxy dataset. Finally, the selected model was

able to achieve the accuracy and memory efficiency that is

comparable to state-of-the-art (SOTA) models, enabling ef-

fective meta learner training merely on a single, commonly

used GPU hardware with approximately 100 GPU hours of

inexpensive computing resources.

The key contributions of this study are as follows. 1) Ex-

pand the application field of NAS in real-world scenarios,

by applying the architecture search for the STR framework.

2) Design an automated STR model capable of end-to-end

training, and an architecture space based on the inverted

residual block of the CNN module was designed to create a

model with high memory efficiency and accuracy. 3) Apply

meta-learner training technique without a proxy task, en-

abling meta-learner to directly find well-adapted modules

on STR scenario, which is a new type of vision applica-

tion. As a result, we obtained an optimized model within

100 GPU hours on a single commonly used GPU. Finally,

the selected model achieved a similar accuracy and memory

efficiency as the SOTA models on seven STR benchmark

datasets.

2. Related Research

Neural Architecture Search. The search algorithms pro-

posed at the startup stage of the NAS technique were

based on reinforcement learning or evolutionary algorithms

[37, 38, 4, 24, 18]. In [37, 38], the authors proposed a

method of training a meta controller that defines the search

space of the cell for basic operations and selects the appro-

priate operation for each cell, allowing an efficient meta-

learning process. In this case, the meta controller updates

the parameters of a candidate model at a specific cycle con-

sisting of learning, evaluation, and updating. This method

executes a dense search of the search space; however, a very

large computing resource is required. Furthermore, exten-

sive time is needed to obtain sufficient information to up-

date the meta controller. To compensate these drawbacks,

the authors in [38] searched for submodules of architectures

using proxy tasks in similar domains and applied them to

a large-scale dataset through an iterative structure of sub-

modules. This type of NAS, however, generates a design

structure that depends on the proxy task. As a result, the

proxy dataset needs to be redefined every time the task type

is changed.

We applied the architecture search technique using the

ProxylessNAS method [5], of which training with a proxy

task is not required, to apply NAS directly to the target

task. In doing so, the meta learner can find the model

considering the entire pipeline of STR. ProxylessNAS

generates an over-parameterized network with all candidate

paths for the architecture search. Thereafter, it performs

a binarized architecture parameter search and training

by path-level pruning, achieving an efficient training and

accurate model search regardless of any proxy task. In this

study, we trained the network based on the architecture

space with various topologies of STR module. The training

that did not require any proxy task and was conducted

on a commonly used GPU through binarized architecture

training and path-level pruning.

Scene Text Recognition. Initially, recognizing the char-

acters was the main objective of optical character recog-

nition (OCR). The method started from a simple classifi-

cation problem, in which an edited number or letter was

recognized [15, 23], and has advanced to be able to rec-

ognize all characters on cleaned documents [26]. Tradi-

tional OCR algorithms, however, do not work well for

STR in the real world, as the character recognition is as-

sumed to be conducted in preprocessed clean documents.

To solve this problem, the STR framework for recog-

nizing text in a natural scene has been actively studied

[29, 33, 30, 7, 20, 2, 6, 31, 21]. As deep neural networks be-
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Figure 2. Architecture space of NAS in the STR framework. (a) Candidate operations for architecture space. Architecture space of

over-parameterized architecture for (b) transformation module and (c) feature extraction module.

gan to be used in the STR framework, various geometric de-

formations and image distortions problems of text in natural

scenes started to be solved. Models that enable end-to-end

training by applying neural network modules at each stage,

from transformation to prediction, and adequate structure

of the input and output of each module were, therefore, pro-

posed. AON [7], MORAN [21], and ASTER [31] presented

a CNN model that enables efficient rectification at the trans-

formation stage, improving the recognition performance of

STR. However, an inconsistency problem in the verification

of the proposed STR frameworks occurred.

To solve the problem, [1] analyzed the contribution of

the proposed STR modules. They performed experiments

on the possible combinations of each STR module, propos-

ing, in the end, a model that corresponds to the best combi-

nation of the modules proposed in the previous study. We

evaluated the STR model obtained by our NAS algorithm on

three criteria(accuracy, memory1 and inference time) using

the benchmark tool proposed in [1]. Among the STR mod-

ules, an optimized STR model was obtained by defining the

architectural spaces of the rectifiers and feature extractors

composed of CNNs while performing architecture search.

This search has shown great benefits regarding memory

and accuracy when it was applied to the feature extraction

module, which has a large number of parameters. Finally,

the STR models obtained from the proposed NAS achieved

similar performance results when compared to the SOTA.

As far as we are aware of, we are the pioneers of the adap-

tation of NAS on STR application with results suggesting

positive potential development.

3. Method

To obtain an optimized STR model, we defined an ar-

chitecture space for the transformation and feature extrac-

tion stages consisting of CNNs among the four stages of the

1Note that even ’memory’ not directly equals number of parameter size,

we follow concept of ’memory-efficient’ from former study. [1]

STR framework. This architecture search did not depend on

proxy tasks, i.e. NAS exactly reflects every stage of STR

with end-to-end training. In order to obtain an STR model

with good memory efficiency and accuracy, the candidate

operation is composed of an inverted residual block, and a

gradient-based learning technique using binarized path level

pruning.

3.1. Architecture Space for CNNs of STR Frame
work

To apply network search strategy based on the Proxyless-

NAS algorithm, the architecture space of the target module

should be configured. Representative methods that defines

the architecture space are the directed acyclic graph (DAG)

[24] or tree-structure [4] schemes. We constructed a tree-

structured architecture space to execute an efficient archi-

tecture search and defined a backbone structure suitable to

each stage module and set of candidate operations. To de-

sign a network considering the trade-off between the accu-

racy and memory efficiency, we defined an structure based

on inverted residual block [28] that produces high compu-

tational accuracy results depending on the number of pa-

rameters of one cell of the convolution computation. In this

case, the structure of the backbone CNN, for the architec-

ture search in the rectifier and the feature extractor mod-

ules, was depended on the type of each module. The candi-

date operations for the cell were similarly applied. Figure 2

shows the architecture space and the set of candidate oper-

ations of each module.

3.1.1 Candidate Operations

We narrow down the candidate operator of the convolu-

tion operations to an inverted residual block [28] to effi-

ciently search for a memory-efficient model in the archi-

tecture space development. The candidate operator was di-

vided into first, normal, and reduction cells for input fea-

tures, according to the stage and role of the feature extrac-
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tion in the backbone CNN. In case of a resize operation, due

to the feature size adjustment, the operation is replaced by

applying the stride parameter of the reduction cells. In case

of an first cell, the low-level feature extraction was the main

purpose of the convolutional operation of the first layer of

the CNN input, therefore, the number of candidate opera-

tors was minimized to {3 × 3, 5 × 5, 7 × 7}, and the ap-

propriate kernel of the convolution operations was selected

by fixing the expansion ratio of the inverted residual block

to 1. The normal cell was a repetitive convolutional block

that was applied to the layered architecture inside the CNN.

The candidate cells for the normal ones were composed of

a combination of the expansion ratio {3 or 6} and the ker-

nel parameters {3× 3, 5× 5, 7× 7}, as well as the identity

mapping. Reduction cells simultaneously extract and resize

a feature, resulting in a CNN architecture with appropri-

ate structure. Moreover, they are composed of the same set

of candidate operations as the normal cells, except for the

identity map. Figure 2 (a) shows the candidate operations

of the architecture space separated by the role of each cell.

3.1.2 Architecture Space for Rectifier

The rectifier of the STR framework is a module that is ap-

plied at the transformation stage. The rectifier is used to

correct an input deformation with an offset grid [21] or to

transform parameters of the control points using thin-plate-

spline (TPS) [30, 31]. We chose the TPS-based rectifier as

the basic module to execute a relatively stable search with

low degree of freedom in the training procedure. For TPS-

based modules, transformation parameters, which results in

the localization of the control points, are learned through

convolution operations of the localization network. We de-

signed an architecture space for the convolutional operation

of the localization network to apply NAS to the rectifier

module. The backbone structure of rectifier is composed

of a shallow CNN with a small number of layers than that

of the feature extractor, similar to the baseline localization

network.

The commonly used structure of a rectifier is as follows:

Following one first cell, a total of five normal cells and five

reduction cells are added. A reduction cell is always pre-

ceded by each normal cell and they are responsible to ad-

just the image size based on the stride parameter, ensuring

that the structure of the CNN required for input and output.

To prevent the architecture space to increase more than the

ideal scenario, therefore, avoiding performance loss, and to

create the structure of the CNN, 2 × 2 rectangular stride is

used. After the feature map extraction, two fully connected

layers would be able to create a normalized image. Figure 2

(b) shows the over-parameterized network for the architec-

ture search of the rectifier.

3.1.3 Architecture Space for Feature Extractor

Until now, the structure of the feature extractor that is

mainly used in the STR framework such as ResNet, VGG,

and RCNN [11, 32, 16], has been a CNN model, which

focuses on the accuracy improvement. We have defined

an over-parameterized architecture, similar to MobileNetV2

[28] using lightweight building blocks to design a model

with high accuracy and low memory usage, unlike the ex-

isting network architectures. As in the rectifier, this network

is optimized through a combination of kernel size and ex-

pansion ratio. As a result, an inverted bottleneck structure

can be generated according to the type of candidate opera-

tion.

The architecture of the space for the tree-structured ar-

chitecture search is as follows. Excluding the first cell,

the entire network is configured assuming that one reduc-

tion cell is added to three normal cells. The total net-

work consists, therefore, of 15 normal cells and 6 reduction

cells. Reduction cells are composed of a combination of

{2× 2, 2× 1} rectangular stride parameters; and they have

more layers than the rectifiers to effectively extract the fea-

ture information required for text recognition and to have a

fully convolutional CNN structure. In Figure 2 (c) the shape

of over-parameterized network for architecture search of the

feature extractor is shown.

3.2. Architecture Search with ProxylessNAS

We performed a module-specific architecture search

based on ProxylessNAS and the architecture space defined

in 3.1. [5] propose to use a reinforcement learning and

gradient-based learning method to efficiently analyze the

binarized architecture. We used a gradient-based learning

to train the proposed architecture space and estimated the

expected time, F , by measuring the operation time for each

learnable block to account for the expected latency.

In the training process, the gradient descent scheme is

performed on the input layout of a randomly selected ac-

tive path of an over-parameterized architecture defined in

the architecture space. The architecture parameter is up-

dated based on the result of the softmax output to calculate

the weight for each operation among the candidate cells.

Thereafter, only two paths are left through binarization, and

the remaining paths are excluded to minimize the computa-

tional cost during the training. The update rule to obtain the

parameters can be approximated as follows.

∂L

∂αi

≈

N∑

j=1

∂L

∂gj

∂
exp(αj)∑
k
exp(αk)

∂αi

=

N∑

j=1

∂L

∂gj
pj(δij − pi) (1)

where α is defined as N real-valued architecture parame-

ters to be updated and p is the softmax output of an archi-

tecture parameter. Moreover, g is a binary gate, which is
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approximated to update only two paths. If i = j, δij = 1
or else δij = 0. The total loss function, L, used to update

the architecture parameters during the training procedure is

defined as a linear summation of the cross-entropy loss and

expected latency. Llatency is a weighted sum of the latency

of candidate operations which is measured multiple times

in advance. λ1 is a scaling term of latency loss.

Ltotal = LCE + λ1 ∗ Llatency (2)

3.3. Other components of STR model

To train and test the STR model, it is necessary to design

modules for the sequence modeling and prediction stages.

For sequence modeling, modules based on recurrent neu-

ral network (RNNs) are widely used as they are able to re-

produce the behavior of the continuity of characters in a

word and extract the correlation between each character in

the CNN feature obtained from the rectified image. In the

prediction stage, the feature obtained from sequence model-

ing is used to obtain predictions through a post-processing

technique, such as CTC [9] or attention-based techniques.

We used a bidirectional sequence modeling module and a

prediction module based on the LSTM [29, 30, 6] and the

attention [30, 6] techniques to create an STR model capable

of end-to-end training.

4. Experiments and Discussions

We performed extensive tests with the STR benchmark

[1] dataset to evaluate the performance of the proposed NAS

technique. In this case, the training process of the architec-

ture was tested on a single GPU which is NVIDIA GeForce

GTX 1080Ti, as it is a commonly used GPU. The evalua-

tion environment was the same experimental environment

as described in [1]. All evaluations of the STR models were

conducted on the same as [1] with NVIDIA P40 GPU and

Intel Xeon E5-2630 v4@2.20 GHz. To compare the results

between the models, we measured the recognition accuracy,

inference time, and memory usage of each model.

4.1. Datasets

Training. We used the MJSynth (MJ) [12] and SynthText

dataset (ST) [10] synthetic datasets to train the STR

model. MJ is a dataset of images that considers various

fonts, borders, shadows, background images, projective

distortions, and noise of a word box. It has a total of 8.9M

images. Meanwhile, ST is a dataset originally designed for

scene text detection. It consists of 8000 background images

obtained from Google image search and is synthesized by

applying a perspective transformation to the target text

using the normal of the local surface. In our tests, we used

images that focus on the text area of the ST dataset (5.5M

cropped images). All 14.4M images, including those in the

MJ and ST, were used to train the STR models.

Testing. For evaluating the STR models, we used all data

classified into regular and irregular datasets for real-world

text images as defined in [1]. Regular text datasets include

IIIT5K-Words (IIIT) [22], Street View Text (SVT) [34], IC-

DAR 2003 (IC03) [14]. IIIT is a dataset composed of 3,000

images from Google image search, including billboards,

signboard, house numbers, house nameplates, and movie

posters. SVT consists of outdoor street images collected

from Google street view. It consists of 257 images for train-

ing and 647 for evaluation, some of which present a lot of

noise or low resolution. IC03 is a dataset created for the IC-

DAR 2003 robust reading competition, consisting of 1,156

images for training and 1,110 images for evaluation. Too

short or non-alphanumeric characters are removed from the

dataset in our tests. A total of 860 or 867 processed images

are used from this dataset. IC13 is a dataset created for

the ICDAR 2013 robust reading competition, which con-

tains most of IC03 data and also provides 848 training and

1095 evaluation images. As in IC13, 1015 or 857 evalua-

tion images were used, and alphanumeric or short texts were

removed.

Irregular datasets include ICDAR2015 (IC15) [13], SVT

Perspective (SP) [25], and CUTE80 (CT) [27]. IC15 was

created for the ICDAR 2015 robust reading challenge and

consists of 4,468 images for training and 2,077 images for

evaluation. All images were collected with Google glass,

and 1,811 images were removed in the pre-processing stage

to exclude non-alphanumeric or excessively deformed im-

ages. The SP dataset consists of 645 images collected from

Google street view and provides other perspective projec-

tion images, such as side images. The CT consists of 288

clipped images collected from a normal image, and most of

the text is curved.

We evaluated the training model for a total of 10 bench-

mark datasets using some or all of the data from each

dataset. The total evaluation data consists of 8,539 entities,

as in [1] (3000 from IIIT, 647 from SVT, 860 or 867 from

IC03, 857 or 1015 from IC13, 1811 or 2,077 from IC15,

645 from SP, and 288 from CT). In addition, the averaged

total accuracy was calculated by performing five tests with

different initialization techniques on one STR model. The

average clock time (ms) per image was measured to evalu-

ate the speed, and the number of parameters for learnable

floating-point operations in the entire STR framework was

calculated to evaluate the memory usage.

4.2. Architecture Search

Training parameters for architecture search Training de-

tails about architecture search based on ProxylessNAS are

as follows. The Adam was used as the optimizer of the ar-

chitecture parameters. The learning rate was set to 1e-5 and
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the weight decay to 3e-6. Meanwhile, AdaDelta was used

as the optimizer for STR model training. In this case, the

learning rate was set to 1.0, ρ to 0.95, and ǫ to 1e-8. The

size of the batch used in the learning stage was 192. The

algorithm performed 300k iterations, and the gradient clip-

ping value was 5. Less than 100 GPU hours are needed to

attain the optimal STR model. After the model search, it

takes 2 more days for STR model parameter tuning on our

searched model.

To evaluate the performance of the meta learner among

these models, we evaluated the STR model obtained from

three different architecture training settings. 1) Model

obtained with the same hyperparameter as ProxylessNAS

and using the complete total loss function (STRNAS1). 2)

Due to the size of the proposed architecture space and the

behavior of the network during the calculation, the latency

term was removed from the total loss (STR-NAS2). 3)

The STR-NAS2 model was used to perform more itera-

tions with lower learning rates for updating architecture

parameters than those from the other cases (STR-NAS3).

Table 1 shows the training performance of the STR models

obtained with these training settings. According to Table

1, the results from the STR-NAS3 model show the best

accuracy and number of parameters.

Search results. We conducted a comparative experiment

with limited architecture space to verify the utility of the

STR model obtained with the proposed architecture search

technique. For this purpose, we compared the performance

of models by excluding search effects within the limited

search space. The same operation parameters were applied

to all inverted residual blocks of the over-parameterized net-

work structure. The STR model designed with limited ar-

chitecture space, presented four cases for the convolutional

parameter set {kernel size, expansion ratio} of the inverted

residual block: {3×3, 3}, {5×5, 3}, {5×5, 6}, {7×7, 6}.

Table 1 shows the performance difference between the STR

model obtained from the proposed NAS and the one with

limited architecture space. Our comparative experiment

shows that NAS has proven to be effective on generating

STR module.

In addition, we analyzed the architecture parameter

search results of the rectifier and feature extractor for each

STR, module to evaluate the search results. Fig. 3 shows the

softmax output after the architecture parameters of the rec-

tifier and feature extractor had fully converged. As shown in

Fig 4, the output of the feature extractor shows a prominent

training result in a specific cell. In the rectifier, however, the

definition of convolutional parameters did not significantly

affect the transformation parameter optimization of the con-

trol point. as the feature extractor had more parameters than

the rectifier, and the definition of convolutional parameters

related to search directly affects the CNN performance dur-
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Figure 3. Softmax output of the architecture parameters. These

tables are obtained after sufficient convergence of the architecture

space for (a) the rectifier and (b) the feature extractor. The first,

reduction, and normal cells are included from the top. As shown in

the architecture parameter the output distribution, the performance

gain from the NAS is significant during the feature extractor.

Normalized Image

Inv 7x7 ext 1

Inv 7x7 ext 3

Inv 7x7 ext 6

Inv 7x7 ext 6

Inv 7x7 ext 6 stride 2x1

Inv 7x7 ext 6

Inv 7x7 ext 6

Inv 3x3 ext 6

Inv 7x7 ext 6

Inv 7x7 ext 6

Inv 7x7 ext 3

Inv 3x3 ext 3

Inv 7x7 ext 3

Inv 7x7 ext 6

Inv 5x5 ext 3

Inv 3x3 ext 3

Inv 5x5 ext 6Inv 5x5 ext 6 stride 2x1

Inv 3x3 ext 6 stride 2x2

Inv 5x5 ext 3 stride 1x1

Inv 7x7 ext 3 stride 2x1

Inv 5x5 ext 3 stride 1x1

Image Feature

Figure 4. Feature extraction module obtained from the overpa-

rameterized network with the proposed NAS technique. This

model is applied to STR-NAS3, which achieved the highest per-

formance among the STR models.

ing feature extraction. The total time spent in the learn-

ing stage was 100 GPU hours on a NVIDIA GeForce GTX

1080Ti. Fig. 4 shows the feature extraction module for the

STR-NAS3.

Comparison with state-of-the-art models. We compared

the accuracy, number of parameters, and inference time of
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Table 1. Performance difference between the model trained from the proposed NAS (STR-NAS) and that with limited architecture space.

The model trained with a limited architecture space consists of all layers of the same convolutional operations.

Model IIIT 3000 SVT 647 IC03 860 IC03 867 IC13 857 IC13 1015 IC15 1811 IC15 2077 SVTP CUTE80 Time ms/image params ×106

3*3 ex3 84.433 82.380 92.442 92.272 92.065 90.148 72.170 66.731 74.109 69.097 30.361 14.101

5*5 ex3 83.667 83.308 92.791 92.964 91.715 90.443 71.121 65.527 75.039 69.097 31.251 14.292

5*5 ex6 84.333 81.917 93.140 93.541 91.599 90.049 72.612 66.827 75.194 67.361 32.994 23.283

7*7 ex6 84.567 83.153 92.907 92.388 91.249 89.655 73.771 67.646 75.194 68.056 30.415 23.857

STR-NAS1 84.967 83.771 92.907 92.849 92.182 91.034 73.771 67.935 74.729 70.139 32.238 21.332

STR-NAS2 85.000 83.771 94.070 93.772 92.532 91.034 73.440 67.935 73.488 68.750 30.738 18.923

STR-NAS3 85.667 85.935 93.488 93.080 91.599 90.542 75.594 69.860 76.899 72.222 33.017 16.821

Figure 5. Accuracy versus memory trade-off curve. P1-P5

curve corresponds to the top 5 performance model. The area under

this curve is maximum for the accuracy–memory tradeoff. The

limited search space model is trained with the experimental setup

described in Section 4.2. The x and y-axis represent the number

of parameters (×10
6) and the y and total accuracy for all datasets,

respectively.

our model with those of various SOTA models fed with 10

different test datasets. In order to reproduce the perfor-

mance of the other models, we used the evaluation metric of

the SOTA models suggested in [1]. Furthermore, we used

SOTA model, which had the highest performance, for the

comparisons. Table 2 shows the comparison results of STR-

NAS3, SOTA, and best combination models. The models

corresponding to the six widest curve area for accuracy-

memory are shown in Fig. 5.

Fig. 5 shows the accuracy versus memory curve of the

inference results for each STR model. The figure shows the

total accuracy on 10 test benchmarks (y-axis) and the num-

ber of parameters that can be used for floating-point opera-

tions (x-axis). The models obtained from the proposed NAS

technique show similar performance to the SOTA models

regarding accuracy and memory efficiency. In particular,

STR-NAS3 shows similar or higher efficiencies than those

from the previously proposed SOTA models.

Figure 6. Accuracy versus time trade-off curve. The T1-T5

curve corresponds to the models that had the 5 highest perfor-

mance. The area under this curve is maximum for accuracy-time

tradeoff. The limited search space model is trained with the exper-

imental setup described in Section 4.2. The x and y-axis represent

the inference speed (ms) and total accuracy for all datasets, re-

spectively.

Fig. 6 shows the accuracy-time graph of the results ob-

tained for each STR model. The inference time of the pro-

posed STR models differs greatly depending on the module

utilized in the prediction stage. Models based on attention

technique are located on the right side of the graph as they

require a lot of computation resources, however, their re-

sults are highly accurate. Meanwhile, models such as CTC-

based models whose results are located on the left side of

the graph indicate relatively fast inference speeds. The pro-

posed STR-NAS models show a relatively slow inference

rate due to the attention-based prediction module. In ad-

dition, the convolution operation of the inverted residual

block focused on the parameter weight reduction, which has

good efficiency in reducing the parameter. The bottleneck

is, however, attributed to the computational speed.
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Table 2. Comparison between the performance of the model obtained with the proposed NAS (STR-NAS3), SOTA, and best combination

model. In the last case, the STR model obtained from the combination of the STR modules for the SOTA models can be regarded as the

upper limit of accuracy.

Model IIIT 3000 SVT 647 IC03 860 IC03 867 IC13 857 IC13 1015 IC15 1811 IC15 2077 SVTP CUTE80 Time ms/image params ×106

CRNN [29] 82.9 82.380 81.6 93.1 92.6 91.1 89.2 69.4 70.0 65.5 4.4 8.3

RARE [30] 86.2 85.8 93.9 93.7 92.6 91.1 74.5 68.9 76.2 70.4 23.6 10.8

R2AM [16] 83.4 82.4 92.2 92.0 90.2 88.1 68.9 63.6 72.1 64.9 24.1 2.9

STAR-Net [20] 87.0 86.9 94.4 94.0 92.8 91.5 76.1 70.3 77.5 71.7 10.9 48.7

GRCNN [33] 84.2 83.7 93.5 93.0 90.9 88.8 71.4 65.8 73.6 68.1 10.7 4.6

Rosetta [2] 84.3 84.7 93.4 92.9 90.9 89.0 71.2 66.0 73.8 69.2 4.7 44.3

STR-NAS3 85.7 85.9 93.5 93.1 91.6 90.5 75.6 69.9 76.9 72.2 33.0 16.8

Best combination [1] 87.9 87.5 94.9 94.4 93.6 92.3 77.6 71.8 79.2 74.0 27.6 49.6

5. Conclusion and Future Works

We applied a NAS method, regardless of proxy task, to

an STR field to design a model with high memory efficiency

versus accuracy. With our best knowledge, our work is the

first trial of adapting NAS on STR application, and suggests

the potential development of STR. By applying the pro-

posed technique to the STR framework, we could automat-

ically generate high-performance models without extensive

experiments, such as module combination [1]. In addition,

on a single commonly used GPU, the performance of the

SOTA models was achieved with only approximately 100

GPU hours. To apply NAS to more advanced STR frame-

works, the methodology needs to be adapted for designing

an architecture space for a CNN that serves a special pur-

pose, such as a rectifier. In addition, by applying architec-

ture search to the sequence modeling and prediction stages,

an improvement in the performance is expected for all mod-

ules of the STR framework.
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