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Abstract

In recent years, image manipulation is becoming in-

creasingly more accessible, yielding more natural-looking

images, owing to the modern tools in image processing and

computer vision techniques. The task of the identification

of forged images has become very challenging. Amongst

different types of forgeries, the cases of Copy-Move forgery

are increasing manifold, due to the difficulties involved to

detect this tampering. To tackle such problems, publicly

available datasets are insufficient. Addressing this issue,

we employed unsupervised domain adaptation to learn the

discriminative features from a large dataset and classify

the forged images in new domains by feature space map-

ping. We synthesized a forgery dataset using image inpaint-

ing and copy-move forgery algorithm. However, models

trained on these synthetic datasets have a significant drop

in performance when tested on more realistic data. We im-

provised the F1 score on CASIA and CoMoFoD dataset to

80.3% and 78.8%, respectively outperforming state-of-the-

art copy-move classification algorithms. Our approach can

be helpful in those cases where the classification of data is

unavailable.

1. Introduction

With the advancement of new image editing technolo-

gies, there is a sharp increase in the number of forgery

cases. While sophisticated image editing tools are meant

to enhance the quality of images, they are misused to create

forged images for nefarious purposes. These images look

so natural that it is difficult to tell with naked eyes whether

they have been tampered or are they authentic. It has led to

a rise in the cases of image forgery in several fields - med-

ical imaging, industrial photography, surveillance system,

criminal, and forensic investigation. [10]

There are diverse ways of forging images, of which

Copy-Move, Splicing, Retouching, and Resampling forg-

eries are the most common ones. Copy-Move Forgery

(CMF) is a type of passive image forgery technique in

which a section of an image is copied and pasted within the

same image. Many post-image processing operations such

as rescaling, affine transformations, resizing, and blurring

are applied to the copied region. As the source and target

image remains the same, the photometric characteristics of

the image remain mostly invariable. Thus, the detection be-

comes even more difficult. For instance, in contrast to CMF,

splicing forgery is a composition of two images. A section

is cut from an image and pasted on another image. As a

result, there is an edge discrepancy that makes the detection

of splicing forgery relatively easier.

Image tampering can have significant effects in various

domains. For instance, in medical imaging, the images are

procured with the utmost sensitivity and is a tiresome pro-

cess. There can be ulterior economical motives for tam-

pering these confidential and sophisticated images. Conse-

quently, it could misguide the patients about their illnesses

and injuries. In the field of education, students can tamper

their documents with online available software tools. The

significant impact of image tampering can happen in the

socio-political area, as manipulated images can affect the

perception of a large group of people. Many magazines and

newspaper editors tamper the images in such a way that they

can change the semantic meaning of the image.

There have been several traditional approaches for

forgery detection that include mostly block-based and key-

point feature extraction [7, 16, 21] and matching proce-

dures. Nowadays, deep learning approaches [20, 1, 17]

have been proposed to counterattack the problem of image

forgery. However, most of the approaches are based on su-

pervised learning. When there are a lot of labeled examples,

then it is easy to train the model via supervised learning. To

counter the problems of training data, we generally surro-

gate the training data by including the dataset from adjacent

modality or use synthetic imagery. When the same model

is evaluated on these datasets, it results in a significant drop

in the performance. It happens due to the shift in style, con-

tent, or appearance distribution between various datasets. In

these cases, domain adaptation is needed to learn the distri-

bution shift.

In this work, we show that manipulations in images

across different domains can be detected via domain adap-
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Figure 1. The first and second column shows the example of target domain dataset (CASIA and CoMoFoD respectively). Subsequent

column shows the generated synthetic data from COCO dataset using semantic inpainting and copy-move forgery algorithm. First row is

authentic image of each category and second row is forged image.

tation. We leverage the power of Convolutional Neural

networks (CNNs) to perceive the distinguishable features

of authentic and tampered images. We tackle the prob-

lem of performance drop by incorporating the feature space

alignment between our synthetic generated datasets and

datasets that are publicly available. We generate the syn-

thetic dataset using Edge-connect semantic inpainting and

CMF algorithm.

Contributions Our main contributions in the paper are

summarized as follows: 1) The primary task is to classify

images as forged or authentic, for which we employ Un-

supervised Domain Adaptation (DA), due to the difference

in content and style between our source and target dataset,

2) As the publicly available datasets are small, we gener-

ate a new dataset comprising of 80,000 images using deep

semantic inpainting and copy-move forgery algorithms on

COCO [6] dataset, and 3) We explore two Unsupervised

DA methods to adapt the features from source dataset to

target dataset, such that the variation between the domains

is minimized.

The paper is organized as follows: Section II describes

the traditional and deep learning solutions that evolved over

the years for forgery classification and a review of domain

adaptation methods. Section III describes our methodology

in detail that involves dataset generation, Unsupervised DA,

and final architectures used for training. After that, in Sec-

tion IV, we evaluate the performance of our architecture on

CASIA[2] and CoMoFoD[13] dataset. Section V discusses

the conclusion and future directions of our work.

2. Related Work

Early works on forgery detection involved traditional ap-

proaches such as Block-based and Keypoint-based. In re-

cent years, with the emerging applications of neural nets,

more work is motivated using CNNs. Considering issues in

the forgery detection areas, like small datasets or unavail-

ability of labels, now there is work that has started focusing

on unsupervised learning. Below, we briefly describe some

earlier and contemporary work.

Block-based approaches divide the image into chunks

of the block that may overlap each other. Then, features

are extracted from these blocks and matched against each

other to compare the similarity between blocks. For fea-

ture extraction, the primary methods used are Frequency

transform, Texture and intensity-based features, moments,

invariant features, and dimensional reduction techniques.

Frequency transform methods [16] are robust to JPEG com-

pression and helps reduce computational complexity, albeit,

the main disadvantage was that they were only restricted

to JPEG compressed images. Their performance was not

checked on TIFF image formats. Texture and Identity-based

features were incapable to deal with variable angle rotation

in images. Moment invariant methods such as Central and

Zernike are robust to translation, scaling, rotation, and con-

trast changes with improvement in time. In dimensional re-

duction techniques, there is a loss in image details and, thus,

low performance in JPEG compressed images. Coming

to the block-based matching, Lexicographical Matching,

Hashing, Euclidean Distance are some of the approaches

used to match the blocks based on defined thresholds. How-
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ever, much unwanted time is wasted in comparing the simi-

larity between these blocks.

In Key-point methods, SIFT and SURF are primarily

used to extract features from images. The main shortcom-

ings are the failure to recognize feature points in flat areas

and detect forged regions if the copy and pasted area looks

naturally similar. For example, an area of grass is cropped

and pasted over the same region where the grass is present.

Then, no helpful features can be extracted for matching pur-

poses. In the keypoint feature matching process, we need to

keep a check on several hyperparameters involving similar-

ity matching threshold and window size for comparison of

patches. They also encounter high time complexity as they

have to match so many number of feature points.

More recently, CNNs based approaches have started

evolving with the ability of neural networks to memorize

complex visual features. This can be contemplated by the

admirable performance of CNNs in various domains. Zhang

et al. [20] divides images into 32x32 patches and matches

them using nearest neighbourhood algorithm. In [9], forg-

eries are detected using hand-crafted filters and features.

This steganalysis approach helps to identify diverse types

of forgeries, but, there are hundreds of parameters that need

to be tuned manually. [18] applies self-correlation between

different blocks extracted from an image. Then, they em-

ploy a pointwise feature extractor to match similar points

and generates a mask over a forged region. Busternet,[17]

the further work of this paper, uses a two branch architec-

ture, to localize the manipulated regions. They created a

dataset of one lakh images and then applied a supervised

pixel label classification to learn forged features.

In DA, initially, statistical-based approaches were used

to minimise the distribution shift such as Correlation Align-

ment, Maximum Mean Discrepancy (MMD) and Kullback-

Leibler divergence. [15] They calculate the distance and

apply linear transformation to align the features of source

domain to target domain before sending them for classi-

fication. The latest advances using CNNs helps to learn

more transferable features. Domain Adverarial Neural Net-

work (DANN), Deep Domain Confusion (DDC), Adversar-

ial Discriminative Domain Adaptation and Joint Adaptation

Network [15] are few of the methods that have illustrated a

significant improve in unsupervised DA. DANN and DDC

use a shared feature extraction layer and then apply mini-

max and domain confusion loss to adapt the feature space.

Annadani’s et al. work is the first use case of domain adap-

tation in the field of image forgery. They used supervised

domain adaptation using the Maximum Mean Discrepancy

(MMD) loss criterion to decrease the domain discrepancy.

Our work is built upon the one reported in [1] and [3]. The

synthetic dataset created by them only included a feather-

ing approach to create an image, which is more suitable for

spliced forgery cases. It does not adapt very well if the im-

age is cut-pasted on the same image, as the characteristics

as a whole remain consistent.

3. Methodology

3.1. Dataset Generation

We applied two methods to generate the dataset. Uti-

lizing anyone of the generated dataset for domain adapta-

tion shows an increase in performance. Semantic Inpainting

helps the model to learn edge discrepancies when the ob-

jects are removed. Copy-Move tampered images improve

the focus of the network to recognize similar patches.

3.1.1 Semantic Inpainting

We synthesized a dataset of inpainted images using all the

sub-categories of the COCO dataset [6] equally. The mask

of particular sub-categories was cropped out. After that,

Edge-connect [8] inpainting is used. It is a type of Deep

Semantic inpainting that uses a two-stage approach to carry

out the inpainting task. Firstly, the incomplete grayscale

image and its edge map is used to predict full edge map

using adversarial and feature matching loss. Then, the im-

age completion network uses incomplete color image and

predicted edge map to complete the image. Perceptual and

style loss penalizes the image completion network to final-

ize the artifact effectively. (Fig. 2) Using the above ap-

proach, we created approximately 20,000 inpainted images.

Figure 2. Illustration of intermediate images involved in semantic

inpainting task

3.1.2 Copy-Move Forgery: Using Object ROI

COCO has 80 object categories. To generate copy-paste

forged images, we selected a specific object category of the

COCO dataset. Then, we took into consideration of each

mask’s area belonging to that category. Comparing all the

mask areas, we select the mask with the largest area. Now,

this region of interest area is copied and pasted over the

image after affine transformations and image blending op-

erations. Blending helps the image to fuse in another image

smoothly. If an object is just copy-paste, then there is a

distinctive boundary that can easily be detected by the algo-

rithm. It’s not helpful at the test time, as, in both CASIA

and CoMoFoD dataset, the copied areas are post-processed

and then pasted. Henceforth, we applied a combination of

alpha blending (using eqn (1)) and Deep Image Matting[19]
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Figure 3. Dataset Generation method: In first approach, Edge semantic inpaint fills the region where object is removed. In CMF, a specific

category is picked and copy-pasted on the same image. We generated a dataset of 80,000 images.

operations so that the pasted regions could easily fit on the

second image. With this approach, we created a dataset

of approximately 60,000 images. Figure 3 illustrates the

method of dataset generation.

I f = αF + (1− α)B (1)

where If is final image, F is foreground object, B is back-

ground image and α is the blending factor.

3.2. Unsupervised Domain Adaptation

Domain Adaptation (DA) is useful in the areas where

the dataset with labels are present in a small amount. Usu-

ally, most of the domain adaptation task focuses on an unsu-

pervised approach as the number of target labels present is

very small in real-world and labels are mostly absent. Un-

supervised DA has a generalized architecture that depends

on three parameters. Firstly, it depends on the base model,

whether it is generative or discriminative, next, based on

weight sharing between source and target domain, and,

lastly what type of adversarial loss is used (see Fig. 4). In

our paper, we explored two unsupervised DA methods, that

are DANN[3] and DDC[14]. Both of them have a discrim-

inative base model, and the weights between the layers are

shared. The adversarial loss in the case of DANN is min-

imax, whereas, in DDC, it’s confusion loss. The detailed

architectures are discussed in the subsequent subsections.

Figure 4. Generalized architecture of Unsupervised Domain Adap-

tation algorithms

3.2.1 DANN

This approach involves the creation of a feature space of

images present in the source and target domain. We aim

to create a distribution of feature representations such that

it is discriminatory among classes and invariant across do-

mains. At the training time, images of both the domains are

present, but we have access to class labels of only the source

domain. DANN has two separate heads, Source Classifi-

cation (SC) head, and Domain Classification (DC) head.

In SC, feature mapping parameters(θf ) and label classifier

parameters(θs) are optimized as such to reduce the classifi-

cation loss(Ls) in case of the source domain (2). While in

DC, feature mapping parameters(θf ) maximizes the domain

loss(Ld) so that the distribution of both domains becomes

similar (3). It simultaneously minimizes the classification

loss for the image, whether it comes from a source or target

distribution. Let source ,feature and target distributions be
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denoted as Ds(x,y), Df(x,y) and Dt(x,y), respectively, where

x is input image feature space and y is the label annotated

to that image.

(θ̂f , θ̂s) = argminL(θf , θs, θd) (2)

θ̂d = argmaxL(θf , θs, θd) (3)

Figure 5. DANN model is divided into three components: i) fea-

ture extractor, ii) source classifier, and iii) domain classifier. Joint

loss is used to improve the network’s ability to assign category and

domain labels to images.

In this way, the network increases the confusion between

source and target domain, so that the model focuses more

on the features that help to distinguish images amongst dif-

ferent classes. As mentioned above, DANN optimizes two

loss functions concurrently during backpropagation. To im-

plement the losses, Stochastic gradient descent can’t be di-

rectly applied. So, the authors introduced a particular layer

called Gradient Reversal Layer (GRL), which is present in

the DC network. During forward pass, it acts as an iden-

tity transform. At the time of backpropagation, it multiplies

the gradient by a negative constant (-∆) and passes it to the

previous layers. The overall loss function is defined in the

(4).

L(θf , θs, θd) =
∑

x=1...N

Ls(Ds(Df), yi)

+(∆)
∑

x=1...N

Ld(Dt(Df), yi) (4)

3.2.2 DDC

Using domain confusion loss, DDC learns the mapping of

the source domain. It minimizes the distance between the

source and target distributions via Maximum Mean Dis-

crepancy (MMD) loss. The architecture separately learns

the discriminative features needed to classify via supervised

learning using source images and labels and features re-

quired to classify the domain of the image. Let the map-

ping of source domain be Ds and mapping of target do-

main be Dt, then the network aims to learn a representation

that could easily be transferable across various domains.

The joint loss function used to train this architecture com-

prises of categorical cross entropy loss (Lclassify) and penalty

parameter(α) multiplied by MMD loss.

Ltotal = Lclassify(x, y) + αMMD2(Ds, Dt) (5)

where MMD (Ds, Dt) is the distance between the domains

calculated using eqn.(6), and, ds and dt are data points from

source and target domains respectively.

MMD(Ds, Dt) =

∥

∥

∥

∥

∥

∥

1

|Ds|

∑

dsǫDs

φ (ds)−
1

|Dt|

∑

dtǫDt

φ (dt)

∥

∥

∥

∥

∥

∥

(6)

The main difference compared to DANN is the use of

confusion loss. In DDC, domain confusion and domain

classifier loss are separate. Domain confusion maximizes

the loss across domains, whereas, in DANN, minimax loss,

simultaneously converges two loss functions. In DANN and

DDC, the weights are tied, making it symmetric mapping

between the domains. It enforces both the domains to have

the same representations in feature space.

Figure 6. The DDC network use a shared feature extraction layer

to adapt the features of target domain. Meanwhile, transfer adap-

tation loss minimizes the distribution shift between the fc layers.

3.3. Architecture

The base model of our architecture extracts features from

images. In DANN, after feature extraction, the DC network

predicts the domain of the input image, and the SC network

predicts the label for source samples. Figure 5 depicts the

architecture of our proposed approach. At the time of train-

ing, we know whether the source domain image is authentic

or forged, while we did not use labels of the target domain.
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We used binary labels to indicate whether the input image

comes from the source or target distribution. In the case of

DDC, the last fc layer features compute the MMD distance

between the domains. This distance is then backpropagated

to minimize the classification loss and maximize the domain

confusion loss.

4. Experiments Analysis

4.1. Dataset Tested

We evaluated our architecture on CASIA V2 and CoMo-

FoD datasets. In our case, the source domain constitutes

of COCO CMF and semantic inpainted images, and, tar-

get domain comprises CASIA V2 and CoMoFoD datasets.

Exhaustive experiments were done using AlexNet [5] and

VGG-7 [11] for feature extraction. These datasets are ex-

plained briefly in the following sections:

4.1.1 CASIA V2.0

It contains 12,614 images in total, of which 7,497 are au-

thentic, and 5,123 are forged images. The resolution of im-

ages ranges from 240 x 160 to 900 x 600. The tampered

images have been applied to post-processing operations and

saved in JPEG and TIFF formats. Out of these 5,123 tam-

pered images, 3,274 images are copy-move, and 1,788 are

splicing. The number of authentic images presents, respec-

tively, for forged images, are 1,701. Henceforth, our total

dataset size comes out to be of 4,975 images.

4.1.2 CoMoFoD

This dataset contains 400 images, 200 authentic, and 200

forged. It contains only copy-move forgery cases in PNG

format. The dimension of images in this dataset is 512 x

512. Various distortions such as translation, rotation, and

scaling are applied to tampered images.

4.2. Implementation Details

We explored diverse color spaces to get a sense of the

behavior of CMF images in different color spaces. Using

Alexnet for feature extraction and DANN for domain adap-

tation, we varied the number of CMF images across RGB

and YCrCb color space for the CASIA dataset. Chromi-

nance component of YCrCb illuminates the identical re-

gions in images with the same luminosity. It helps the deep

networks to visualize copy-pasted regions in images.

In DANN, we used categorical cross-entropy as loss

function and Adam optimizer with learning rate 0.001. The

DDC network is trained using Stochastic Gradient Descent

optimizer, with a momentum value of 0.9, and learning

rate value of 0.0001. At the time of training, we initially

used only CMF images for unsupervised domain adapta-

tion. Then, we included semantic inpainted images to study

the effects of edge discrepancy in recognizing forged im-

ages. There are no labels used at the time of training. For

the target domain, images are passed with a domain label

attached to it, and the source domain has a class label also

assigned to it. The source model adapts the weights to clas-

sify target images with the same features into a particular

category.

During testing, the target images are passed through the

source classifier model, whose weights are now adapted

to features specific to target data. We divided the CASIA

dataset into an 80:20 ratio. 80% of the data used for train-

ing, and then, 20% used for testing. As CoMoFoD con-

tains only 200 images, all the images were used to learn

the discriminative features, as well as for evaluation. We

used classification accuracy, precision, recall, and F1-score

as performance metrics to evaluate our architectures. Preci-

sion is expressed as the number of true positives divided by

the sum of true and false positives. The recall is defined as

the ratio of true positives by true positives and false nega-

tives. F1- score is the harmonic mean of recall and precision

score.

4.3. Performance Analysis

We will now discuss the results summarized in Table 1

and 2. We trained our architecture on source dataset and

evaluated it on target dataset. From Fig 7, we can visualize

the performance of architecture in RGB and YCrCb space.

Figure 7. Accuracy/F1-score v/s Number of source images used.

This plot shows the COCO → CASIA case. From the image, we

can conclude that RGB outperformed YCrCb space in both accu-

racy and F1-metrics.

As the number of images increased, the results improved

for domain adaptation. Due to complex post-processing op-

erations, YCrCb space was unable to localize same tam-

pered regions. As RGB color space performed better, there-

fore, for our future training of domain adaptation algo-

rithms, we chose RGB images for source and target do-

mains.

In starting, we only used CMF images for unsupervised

DA. DANN and DDC were able to minimize the distance

between the two datasets distributions, but using only CMF
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Source Images COCO → CASIA COCO → CoMoFoD

CMF Inpaint DDC DANN DDC DANN

Authentic Forged Authentic Forged Acc. F1 Acc. F1 Acc. F1 Acc. F1

10,000 10,000 - - 60.63 71.92 59.76 71.47 60.25 61.52 51 63.7

10,000 10,000 5,000 5,000 66.56 80.18 64.78 78.52 66.25 78.99 51.29 65.48

10,000 10,000 10,000 10,000 64.26 77.74 64.85 76.54 63.25 76.12 51.71 63.38

15,000 15,000 5,000 5,000 67.97 76.62 65.91 79.16 57 76.05 51.75 67.12

Table 1. Evaluation of DANN and DDC trained with base feature extraction model as Alexnet varying the amount and type of source

domain images.

Architecture CASIA CoMoFoD

Precision Recall F-1 Precision Recall F-1

BusterNet [17] 78.22 73.89 75.98 57.34 49.39 49.26

DDC MMD AlexNet 68.02 97.73 80.18 65.62 97.86 78.99

DDC MMD VGG 57.27 95.02 70.13 65.39 91.24 76.18

DANN AlexNet 66.19 98.47 79.16 51.05 83.5 63.34

DANN VGG 68.26 99.84 80.34 49.65 72.04 58.75

Table 2. Comparison from previous architecture BusterNet[17]. Our model DANN with VGG feature extraction and DDC with AlexNet

performs the best on CASIA and CoMoFoD dataset respectively.

images makes the network biased towards objects resem-

bling the same feature characteristics. To analyze the contri-

bution of the amount of CMF images for domain adaptation,

we examined each time with an increment of 10,000 im-

ages. We saw that just by increasing CMF images, there are

no noteworthy changes in the accuracy and F1-score on the

target domain. In cases where the copied and background

region are the same, e.g., grass, then the model is unable

to distinguish the image as authentic or tampered. To alle-

viate this problem, we incorporated semantic inpainted im-

ages to learn the edge discriminative features. It helped the

model to learn the dissimilarities near the edges of the im-

ages are copy-pasted. As the target domain contains CMF

images, increasing the distribution of semantic images be-

yond 10,000 images leads to drop in performance. Table

1 shows the effect of utilizing both semantic inpainted and

copy-move tampered images. In contrast to contemporary

networks such as Inception[12] and ResNet[4], we used

AlexNet and VGG-7 as our base models, because, these net-

works have a huge number of parameters and due to limited

amount of target domain images, the model doesn’t gener-

alize well.

COCO → CASIA: In CASIA, there are 3979 images used

for training purposes and 996 images for evaluation. With

DDC, we saw a sudden jump by including semantic in-

painted images. Using DANN, we achieved the best score,

when the highest number of images were used. As there is

a large number of images available at the time of training,

we can see from Table 2 that DANN+VGG-7 achieves the

highest recall and F1-score.

COCO → CoMoFoD: CoMoFoD dataset is very small.

Due to the presence of 200 images only, we trained and

evaluated on the whole dataset. With the increase in the

number of images in the source domain, accuracy and F1

score decreased in DDC, and, insignificant increase using

DANN. As the dataset was small, we can see from Table 2

that DDC+ MMD with Alexnet as base model performed

better compared to VGG-7. VGG-7 has a huge number of

parameters that can’t be optimized; hence, they performed

poorly at the test time.

To compare with previous work, we analyzed our re-

sults with BusterNet architecture. They mainly took into ac-

count of CASIA CMF and CoMoFoD dataset. Other works,

mainly used all images of CASIA dataset, not explicitly for

CMF images. In BusterNet, they created and trained on 1

lakh images for supervised training, and then evaluated on

these datasets. In CoMoFoD, they used 200 images as ours,

but, in CASIA, they took only 1356 CMFD images into ac-

count compared to 4975 of ours. Our approach improves

the accuracy by 5-6% in the case of CASIA and 27-28%

in the case of CoMoFoD. Table 2 shows the performance

comparison between ours and BusterNet. Whereas Buster-

Net has used pixel-wise annotations to learn the class of

images, we have not used any label at the time of training.

In our case, as the data distribution is too much imbalanced,

precision and recall score plays a significant role. We can

see that our precision score is not in the comparable range

of recall scores. It is due to the reason, as we have less num-

ber of positive class images in contrast to the negative class.

As we look into the denominator of precision and recall, in

the first case, the denominator is the sum of true plus false

positives. Now, we have too many images in a false class.
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It attributes to a large number of false positives. Whereas

in the recall, the denominator is the sum of true positives

plus false negatives. The false-negative number is less as

the number of images in the correct class is fewer.

5. Conclusion

In this paper, we outlined novel unsupervised learning

approaches to detect CMF in new domains. We presented

evaluation over different feature extraction models. To over-

come the shortage of small publicly available datasets for

image forgery, we suggested two new approaches for syn-

thetic dataset generation. The dataset will be provided on

request. Our approach outperforms the accuracy of the pre-

vious method, which incorporates supervised deep learning.

In the future, we aim to explore GANs for the generation of

realistic tampered images and the inclusion of splicing and

inpainting forgery to make our model more robust.
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