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Abstract

Witnessing impressive results of deep nets in a number

of computer vision problems, the image forensic community

has begun to utilize them in the challenging domain of de-

tecting manipulated visual content. One of the obstacles to

replicate the success of deep nets here is absence of diverse

datasets tailored for training and testing of image forensic

methods. Such datasets need to be designed to capture wide

and complex types of systematic noise and intrinsic artifacts

of images in order to avoid overfitting of learning methods

to just a narrow set of camera types or types of manipula-

tions. These artifacts are brought into visual content by var-

ious components of the image acquisition process as well as

the manipulating process.

In this paper, we introduce two novel datasets. First, we

identified the majority of camera brands and models on the

market, which resulted in 2,322 camera models. Then, we

collected a dataset of 35,000 real images captured by these

camera models. Moreover, we also created the same num-

ber of digitally manipulated images by using a large variety

of core image manipulation methods as well we advanced

ones such as GAN or Inpainting resulting in a dataset of

70,000 images. In addition to this dataset, we also cre-

ated a dataset of 2,000 “real-life” (uncontrolled) manipu-

lated images. They are made by unknown people and down-

loaded from Internet. The real versions of these images also

have been found and are provided. We also manually cre-

ated binary masks localizing the exact manipulated areas of

these images. Both datasets are publicly available for the

research community at http://staff.utia.cas.cz/novozada/db.

1. Introduction

Today, manipulated visual content has become a seri-

ous problem that is negatively impacting many aspects of

our life. Advances in image editing techniques and user-

friendly editing software have made possible the creation of

realistic looking manipulated visual content. In addition to

classic image editors, we are also facing a growing popular-

ity of novel apps and software tools using recent advances in

computer vision such as Generative Adversarial Networks

(GAN) [29].

It is obvious that there is a fundamental need to have

technologies that make possible to reliably assess the in-

tegrity of digital images and videos. However, today’s

methods of image/video forensics suffer from serious lim-

itations, resulting in their low accuracy when applied in

real-life conditions. Witnessing impressive results of deep

nets in a number of computer vision problems, the image

forensic community has begun to utilize deep nets in the

challenging domain of detecting manipulated visual con-

tent. However, there are a few obstacles in order to replicate

the success of deep nets here.

One of the major obstacles is the demand of deep nets

for large-scale datasets during training. In 2009, the Ima-

geNet dataset [15] was released. It provided researchers in

the area of images classification with a large scale annotated

dataset. In order to build this dataset Fei-Fei Li et al. [15]

leveraged Google Image Search to pre-filter large candidate

sets for each category. Additionally, they used the Amazon

Mechanical Turk crowdsourcing pipeline [55] to manually

validate each image if it belonged to the associated category.

This large dataset significantly pushed computer vision and

machine learning research forward and helped to develop

classification models performing at much better accuracies

than academic methods previously published. Today, the

computer vision community benefits from several such pub-

licly available datasets like: UCID [51] and ImageCLEF

[28] for image retrieval; PASCAL [18], ImageNet [15], and

Microsoft COCO [34] for tasks such as object detection,

segmentation, and recognition.

None of mentioned datasets can directly serve the im-

age forensic community since they have not been intention-

ally collected digitally manipulated data. They also lack
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diversity and annotations required from the forensic per-

spective. So far, most of the image forensic authors relied

on small datasets which typically cannot capture wide and

complex image artifacts that are brought into real-life im-

ages throughout their lifecycle. This also has caused that

existing methods often fail in cross-dataset tests and gener-

alization. Some of the authors tried to overcome the prob-

lem by training their methods only using real images (e.g.,

[26]). Some others tried to overcome the problem by build-

ing their internal limited datasets (e.g., [12]) and rather fo-

cus on domain adaptation.

In this work, our aim is to introduce a large annotated

dataset for detecting manipulated visual content. Inspired

by the semi-automatic way that ImageNet has been built,

we will build in a semi-automatic way a dataset that cap-

tures a large diversity of image and manipulation artifacts.

Creating such a dataset is a challenging task. Each camera

brings into the image different kinds of artifacts. Some ar-

tifacts are unique to particular camera device and some are

unique to camera model. Various compressions levels bring

different quantization noise into the visual content. Each

type of manipulation brings different traces of editing into

images, etc. Overall, we can categorize intrinsic artifacts

existing in the visual content into three main groups: (i) ac-

quisition artifacts, see Fig. 1 (e.g., sensor noise, demosaick-

ing algorithms or gamma correction); (ii) format artifacts

(e.g., JPEG and quantization noise); (iii) manipulation arti-

facts (e.g., artifacts left by GAN in the image).

Figure 1: Individial steps and components forming a typical

digital image [45].

Above mentioned artifacts play a key role in methods of

image/video forensics. To detect traces of image manip-

ulation, we can notice that often image forensic methods

actually attempt to eliminate the image content and empha-

size these kinds of intrinsic artifacts. This is often achieved

by employing high pass filters and resulting noise residu-

als. These noise residuals are then employed (instead of the

original image) to detect traces of manipulation. Although

the above-mentioned artifacts are often invisible by naked

eye, dataset with lack of a high variety in them might result

in overfitting of learning methods to a narrow set of cam-

eras or types of manipulations causing that methods per-

form poorly on new and unseen manipulations (e.g., [12]).

1.1. Contribution

This paper studies intrinsic artifacts in images, and pro-

vides a comprehensive review of existing image forensic

datasets. Moreover, it also brings a survey of existing CNN-

based methods for detecting image manipulation. The main

contribution of the paper is creation of two novel datasets.

The first dataset comprises 35,000 real images captured by

2,322 different camera models. These camera models form

the majority of existing cameras on the market. The dataset

provides a rich and diverse set of sensor noise, artifacts

that various imaging software embedded in cameras bring

into images, and compression artifacts. Moreover, we also

synthetically created a set of manipulated images by using

a large variety of manipulation operations including core

image processing techniques as well as advanced methods

based on GAN or Inpanting. This resulted in 70,000 im-

ages in total. In addition to this dataset, we also downloaded

2,000 “real-life” (uncontrolled) manipulated images created

by random people from Internet. Real versions of these im-

ages also have been found and are provided. Binary masks

localizing the manipulated areas have been created manu-

ally.

We hope that collected datasets will contribute to facil-

itating future research on detection of manipulated visual

content.

2. Artifacts brought into images in their lifecy-

cle

The journey of a digital image can be represented as a

composition of several steps: (i) acquisition; (ii) coding;

and digital editing [45]. For the sake of simplicity, we

model the image acquisition process in the following way:

Ii,j = Ioi,j + Ioi,j · Γi,j +Υi,j (1)

Here, Ii,j denotes the image pixel at position (i, j) produced

by the camera, Ioi,j denotes the noise-free image (perfect

image of the scene), Γi,j is multiplicative noise, such as

PRNU (photo response non-uniformity) and Υi,j stands for

all additive noise components.

In this section, we briefly describe the major types of

artifacts brought into images during the acquisition process

and in their later stages of the lifecycle.

2.1. Artifacts associated with acquisition devices

Each component of the digital image acquisition device

brings into the image some intrinsic artifacts (fingerprints)

that are present in the final visual content output.
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During acquisition, the light of the real scene is focused

through the optical system of the camera on its sensor (typ-

ically CCD or CMOS). The sensor consists of small ele-

ments called pixels that collect photons and convert them

into voltages that are subsequently sampled by a digital sig-

nal in an A/D converter. Before reaching the sensor, how-

ever, the light is usually filtered by the Color Filter Array

(CFA). The CFA is a mosaic of tiny color filters placed over

the pixel of an image sensor to capture particular color in-

formation. Color filters are used because typical consumer

cameras only have one sensor and hence cannot separate

color information. In practice, each pixel collects only one

particular main color (red, green, or blue). The sensor out-

put is successively interpolated to obtain all the three main

colors for each pixel, through the so-called demosaicking

process, in order to obtain the digital color image [45]. The

resulting signal is then further processed using color correc-

tion and white balance adjustment. Additional processing

includes gamma correction to adjust for the linear response

of the imaging sensor, noise reduction, and filtering opera-

tions to visually enhance the image.

Some of the above-mentioned artifacts are unique to par-

ticular camera (per sensor) and some are in common for all

cameras of the same model or brand (i.e., cameras having

the same embedded software). For instance, pattern noise

associated with the image sensor is typically unique. As

pointed out in [16], if we take a picture of an absolutely

evenly light scene, the resulting digital image will still ex-

hibit small changes in intensity among individual pixels

which is partly because of pattern noise, readout noise or

shot noise. Sensor pattern noise has been widely used by

authors to identify the exact camera that captured the image

[37]. To this end, authors typically use PRNU which is a of

the sensor pattern (the multiplicative component of Eq. 1).

Figure 2 shows two different cameras capturing the same

scene and their corresponding sensor pattern noise. A light

scene as use since light scene with minimal number of edges

enable an easier extraction and modeling of the sensor noise

[37].

Figure 2: In (a) the captured scene is shown. (b) shows the

extracted sensor pattern noise of a Nikon Coolpix S3000

device. (c) shows the same for Samsung Pl51. As apparent

sensor noise of these two cameras differ.

.

On the other hand, if we look at, for example, the demo-

saicking process, it is typically identical for all cameras of

the same model (if they use the same embedded software

and demosaicking algorithm). Different demosaicking al-

gorithms bring different interpolation related artifacts. For

example, Mahdian et al [39] shows that these interpolation

techniques often bring into the image invisible periodic ar-

tifacts.

2.2. Artifacts associated with lossy compression

The output of the camera is typically compressed and

stored in JPEG which is the most commonly used image

format. In JPEG, the image is first converted from RGB to

YCbCr, consisting of one luminance component (Y ), and

two chrominance components (Cb and Cr). Mostly, the res-

olution of the chroma components are reduced (usually by

a factor of two). Then each component is split into adjacent

blocks of 8 × 8 pixels. Each block of each of the Y, Cb,

and Cr components undergoes a discrete cosine transform

(DCT ). Let f(x, y) denote a pixel (x, y) of an 8× 8 block.

Its DCT is:

F (u, v) =
1

4
C(u)C(v)

7
∑

x=0

7
∑

y=0

f(x, y) cos
(2x+ 1)uπ

16
cos

(2y + 1)vπ

16
,

where u, v ∈ {0 · · · 7}; C(u), C(v) = 1/
√
2 for u, v = 0;

otherwise C(u), C(v) = 1.

In the next step, all 64 F (u, v) coefficients are quantized.

The quantization step is given by a 64-element quantization

table (QT ):

FQT (u, v) = round

(

F (u, v)

QT (u, v)

)

, u, v ∈ {0 · · · 7}

where QT (u, v) defines the quantization step for each

DCT frequency u and v. Commonly, there is one QT for

Y and another single QT for both Cb and Cr.

Quantization tables determine the quantization rate

(compression rate). They bring into the image quantization

noise and blocking artifacts that are typical for JPEG com-

pressed images. Therefore an image forensic dataset should

ideally cover a wide range of quantization tables (compres-

sion rates) to avoid overfitting of learning methods to spe-

cific kinds of JPEG artifacts and compression levels.

2.3. Artifacts associated with various types of ma­
nipulation

Different image editing can be applied to an image dur-

ing its life. This includes simple operations such as geomet-

ric transformation (rotation, scaling, etc.), blurring, sharp-

ening, or more advanced and possibly malicious changes

such as image splicing or cloning (copy-move), inpainting

operations (e.g., [27], [61]), or GAN (e.g., Cycle-GAN [67]
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or Style-GAN [30]). Obviously, image forensic community

is mainly focused on detecting malicious types of manipu-

lations. There are three major types such manipulation: (i)

copy-paste (copying an area from the same image and past-

ing it to a different area of the same image); (ii) splicing

(the manipulated image is created by combination of two or

more images.); (iii) and re-touching (locally editing an area

of the image).

All such manipulations leave characteristic traces in the

image. For instance, authors have noticed that GAN based

methods also leave distinct invisible artifacts in the image

(e.g., [63]). There are two main components in GAN: dis-

criminator and generator. The discriminator tries to distin-

guish real images of the target category from those gen-

erated by the generator. On the other hand, the generator

takes an image of the source category as input and tries to

generate an image similar to images of the target category

and making them indistinguishable by the discriminator.

Looking on more details to the GAN pipeline (e.g., Fig. 3)

we can notice that typically generator contains two com-

ponents: encoder and decoder. The encoder contains a few

Figure 3: Typical pipeline of image2image translation [63].

down-sampling layers which aim to extract high-level infor-

mation from the input image and generate a low-resolution

feature tensor. The decoder, on the other contains a few up-

sampling layers which take the low resolution feature tensor

as input and output a high-resolution image. According to

Zhang et al. [63], although the structures of GAN models

are quite diverse the up-sampling modules used in different

GAN models are consistent. The up-sampling bring into

the image specific artifacts (e.g., interpolation based [39]).

Zhang et al. [63] addressed these up-sampling related ar-

tifcats and used them to detect GAN based images. They

showed that they are present in most of the commonly used

GAN methods.

To summarize this section, a well-designed forensic

dataset should capture changes brought into images by va-

riety of acquisition devices, compression levels, and types

of manipulations. As pointed out some of these artifacts are

unique per each particular camera (i.e., sensor), and some

of them are unique per camera brand or model or software

editor (e.g., demosaicking algorithm or JPEG compression

parameters).

3. Related Work

In this section we review existing datasets as well as

CNN-based methods dealing with detection of image and

video manipulation.

3.1. Related Datasets

The CoMoFoD dataset [53] has been designed for copy-

move forgery detection. It consists of 260 forged im-

ages in two categories of small (512x512 pixels), and large

(3000x2000 pixels). Each set includes a forged image, mask

of the manipulated area, and its original image. Images are

divided into 5 groups according to applied manipulation:

translation, rotation, scaling, combination and distortion,

etc. The MICC-F220, MICC-F2000 [2] is another dataset

focused on copy-paste. MICC-F220 is formed by 220 im-

ages: 110 are tampered images and 110 are originals. The

resolution varies from 722 × 480 to 800 × 600 pixels. The

Columbia spliced image database [44] has two parts. First, a

grayscale image dataset with 933 authentic and 912 spliced

grayscale image blocks, and a color image dataset with 183

authentic uncompressed color block images and 180 spliced

uncompressed color block images.

CASIA Image Tampering Detection Evaluation

Database [17] is an image forensics dataset that focused on

splicing. CASIA v1.0 has 800 authentic and 921 spliced

384×256 images. CASIA v2.0 contains 7,491 authentic

and 5,123 tampered images. The First Image Forensics

Challenge [1] collected thousands of images of various

scenes, both indoors and outdoors. The dataset served for

an international competition organized by the IEEE Infor-

mation Forensics and Security Technical Committee and

comprises of a total of 1176 forged images. Wen et al. [57]

introduced a small dataset called Coverage designed for

copy-paste detection. The REWIND (REVerse engineering

of audio-VIsual coNtent Data) [48] dataset contains 142

hand-made manipulated images for the evaluation of image

tampering detectors. Half of the images is original; the

other half is a set of hand-made forgeries. There are also

4800 automatically manipulated images. Barni et al. [5]

created a small dataset for detecting cut and paste splicing

(ISCAS). Zhou et al. created a dataset of manipulated faces

[66] by using FaceSwap [20] and SwapMe [52]. There are

1005 tampered images for each tampering technique (2010

tampered images in total) and 1400 authentic images for

each subset. Realistic Tampering Dataset [31] proposes

a dataset of realistic forgeries created manually by using

editors such a GIMP and Affinity Photo. The National

Institute of Standards and Technology (NIST) presented

with a large benchmark dataset - Nimble Challenge 2017

[24]. This dataset contains a total of 2,520 manipulated

images. In following years, NIST also has published

additional datasets MFC2018 and MFC2019 [24].

Most of the currently published datasets (see Tab 1) are
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Table 1: Examples of datasets designed for image manipu-

lation detection.

Dataset Size Binary mask

CoMoFoD dataset [53] 260 Yes

MICC-F220, MICC-F2000 [2] 2,200 No

Columbia [44] 1,845 No

CASIA [17] 1,721 No

CASIA v2.0 [17] 12,323 No

REWIND Real [48] 142 Yes

Zhou et al. [66] 3,410 No

Nimble Challenge 2017 (manipulated) [24] 2,520 Yes

ISCAS [5] 20 No

Realistic Tampering [31] 440 Yes

Coverage [57] 100 Yes

IMD2020 Synthetically Created (proposed) 70,000 Yes

IMD2020 Manually Created (proposed) 2,000 Yes

limited in size, acquisition device variety, content, attacks

type, and compression/post processing variety. Typically,

they are created in a controlled environment.

3.2. State­of­the­Art Methods

Early methods of image forensics have focused on

detecting individual types of manipulations using hand-

crafted features. These traditional methods typically aim

to detect some targeted inconsistencies among pixels. Here,

we mention a few examples of such methods. Farid et al.

[21] proposed a method for detecting composites created

by JPEG images of different qualities. The method detects

whether a part of an image was initially compressed at a

lower quality than the rest of the image. In [46], Hany Farid

described the specific correlations brought by the CFA in-

terpolation into the image and proposed a method capable

of detecting their inconsistency across the image.

Mahdian et al. [40] proposed a method for detecting lo-

cal image noise inconsistencies based on estimating local

noise variance using wavelet transform. Weiqi Luo et al.

[38] proposed a method for detecting recompressed image

blocks based on JPEG blocking artifact characteristics. In

[56], Wei Wang et al. proposed an image splicing detection

method based on gray level co-occurrence matrix (GLCM)

of thresholded edge image of image chroma. In [8], Sevinc

Bayram et al. proposed a clone detector based on Fourier–

Mellin transform of the image’s blocks. The Fourier–Mellin

transform is invariant with respect to scale and rotation.

This allows a better behavior of the method when dealing

with slightly resized and rotated cloned regions. A survey

of classic image forensic methods is provided in [49].

3.2.1 CNN-based image forensic Methods

Deep neural networks have shown to be very effective in

various image processing tasks and computer vision so

there is no surprise that the image forensic community also

has shifted its direction to utilize achievements of deep

learning. In [23], Ghosh et al., assume that the spliced and

host regions come from different camera-models and seg-

ment these regions using a Gaussian-mixture model. They

learn high pass rich filters using constrained CNNs that

compute residuals, highlighting low-level information over

the semantics of the image. In [10], Bunk et al. used re-

sampling features computed on overlapping image patches

that are passed through a Long short-term memory (LSTM)

based network for classification and localization of manip-

ulation. In [59], Wu et al. introduced a novel deep neural

architecture for image copy-move forgery detection. The

method is based on a two-branch architecture followed by

a fusion module. The two branches localize potential ma-

nipulation areas using visual discontinuities and copy-move

regions via visual similarities, respectively.

In [64] Zhang et al., introduced a Shallow Convolu-

tional Neural Network (SCNN) capable of distinguishing

the boundaries of forged regions from original edges in low-

resolution images. It uses information of chrominance and

saturation channels. In [12], Cozzolino et. al, address the

problem of inaccurate results of today’s CNN based meth-

ods when performed in cross-dataset test scenarios. The

underlying CNN quickly overfit to manipulation-specific

artifacts resulting in learning features that are highly dis-

criminatory for the given dataset but lack of generalization.

To address this limitation in transferability, they introduced

Forensic-Transfer (FT). They learn a forensic embedding

based on am auto-encoder based architecture [54] that can

be used to distinguish between real and fake imagery. An

unseen manipulated image will be detected as fake if it gets

mapped sufficiently far away from the cluster of real im-

ages. Authors show that only a few training samples of the

target domain of tampering enable to finetune their model

to achieve high accuracies.

In [43], Mazaheri et al. assume that most of the ma-

nipulated images leave some traces near boundaries of

manipulated regions including blurred edges. They pro-

posed an encoder-decoder based network where they fuse

representations from early layers in the encoder. In [3],

Bappy et al. employed manipulation localization architec-

ture which utilizes resampling features, Long-Short Term

Memory (LSTM) cells, and encoder-decoder network to

segment manipulated areas of the image. Resampling fea-

tures are used to capture artifacts like JPEG quality loss, up-

sampling, down-sampling, rotation, and shearing. In [62]

Yu et al. analyzed learning GAN fingerprints in order to use

them to classify an image as real or GAN-generated. Their

experiments show that even a small difference in GAN
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training (e.g., the differencein initialization) can leave a dis-

tinct fingerprint that commonly exists over all its generated

images. In [4], Bappy et al. presented a unified framework

for joint patch classification and segmentation to localize

manipulated regions from an image. They assume that a

key property of manipulated regions is that they exhibit dis-

criminative features in boundaries shared with neighboring

non-manipulated pixels. Their method learns the bound-

ary discrepancy, i.e., the spatial structure, between manipu-

lated and non-manipulated regions with the combination of

LSTM and convolution layers. In [11], Kim et al. employed

a deep learning approach that utilizes a high pass filter to

acquire hidden features in the image rather than semantic

information in the image.

In [47], Rao et al. proposed a customized CNN based

method for detecting manipulation. The weights at the first

layer of their network are initialized with the 30 basic high-

pass filters used in spatial rich model for image steganaly-

sis, which helps to efficiently suppress the effect of complex

image contents and accelerate the convergence of the net-

work. In [14], Cun et al. instead of classifying the spliced

region by a local patch, they leveraged the features from

whole image and local patch together, calling this structure

Semi-Global Network. In [65], Zhou et al, proposed a novel

network using both an RGB stream and a noise stream to

learn rich features for image manipulation detection. The

authors observed that the fusion of the two streams leads to

improved performance. In [13], Cozzolino et al. proposed

a deep learning method to extract a noise residual, called

noiseprint, where the scene content is largely suppressed

and model-related artifacts are enhanced. In the paper they

demonstrate promising forgery localization results.

In [9], Bondi et al. proposed a method leveraging charac-

teristic footprints left on images by different camera mod-

els. The rationale behind the method is that all pixels of

pristine images should be detected as being shot with a sin-

gle device. By contrast to such images, if a picture is ob-

tained through image composition, traces of multiple de-

vices can be detected. In [7], Bayar et al. have developed a

new type of CNN layer called a constrained convolutional

layer that is able to jointly suppress an image’s content and

adaptively learn manipulation detection features. Through

a series of experiments, they show that the proposed con-

strained CNN is able to learn manipulation detection fea-

tures directly from data and outperforms the existing state-

of-the-art general purpose manipulation detectors. In [36],

Liu et al. proposed to utilize Convolutional Neural Net-

works and the segmentation-based multi-scale analysis to

locate tampered areas in digital images. Authors observed

that exploiting the benefits of both the small scale and large-

scale analyses, the segmentation-based multiscale analysis

can lead to a performance leap in forgery localization of

CNNs.

In [50], Salloum et al. proposed a technique that uti-

lizes a fully convolutional network (FCN) to localize image-

splicing attacks. The utilized FCN is based on the FCN

VGG-16 architecture with skip connections, and authors

incorporated several modifications, such as batch normal-

ization layers and class weighting. They show significant

improvement in comparison to state of the art methods. In

[26], Huh et al. proposed an algorithm that uses the au-

tomatically recorded photo EXIF metadata as supervisory

signal for training a model to determine whether an im-

age is self-consistent. In other words, whether its content

could have been produced by a single imaging pipeline.

The method demonstrated superior results in comparison to

other existing ones.

In [32], Le-Tien et al. proposed a low computational-cost

and fully connected neural network to address the problem

of image forgery detection. In [6], Bayar et al. tried to

prevent the CNN from learning features that represent an

image’s content. They proposed a new form of convolu-

tional specifically designed to suppress an image’s content

and learn manipulation detection features. In [58], Wu et

al. showed that both image splicing detection as well as lo-

calization can be jointly solved using a multitask network

in an end-to-end manner. In [42], Marra et al. attempts

to avoid downsizing of images before analyzing them by

CNNs. They propose a CNN-based image forgery detection

framework which makes decisions based on full-resolution

information gathered from the whole image.

In [63], Zhang et al. proposed a GAN simulator, which

can simulate the artifacts produced by the common pipeline

shared by several popular GAN models. They identified

a unique artifact caused by the up-sampling component

included in the common GAN pipeline. Without seeing

the fake images produced by the targeted GAN models

during training, the approach achieves state-of-the-art per-

formances on detecting fake images generated by popular

GAN models. In [41], Marra et al. studied the performance

of several image forgery detectors against image-to-image

translation, both in ideal conditions, and in the presence

of high compression, routinely performed upon uploading

on social networks. They showed that particularly Xcep-

tionNet can achieve high accuracies in detection of GAN-

generated fake images published on social networks. In

[60], Wu et al. introduced a network called ManTra-Net.

They formulated the forgery localization problem as a local

anomaly detection problem, designed a Z-score feature to

capture local anomaly, and propose a novel long short-term

memory solution to assess local anomalies. The method ex-

tracts image manipulation trace features for a testing image,

and identifies anomalous regions by assessing how different

a local feature is from its reference features. They demon-

strated a good improvement over the existing methods.
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4. The IMD2020 Dataset

Image forensic methods often eliminate the image con-

tent and analyze the underlying (hidden) noise/artifacts

component of the image to find inconsistencies. As pointed

out earlier, some of the intrinsic artifacts are unique to sen-

sor/camera and some others shared by images captured by

cameras of the same brand/model. To avoid potential over-

fitting to a narrow set of camera models, we collected a list

of the majority of camera models existing in the market.

Subsequently, we searched for images captured by these

devices on Flickr (Flickr enables a search based on cam-

era information included in metadata). If available, 30 real

images per camera model have been downloaded.

However, when downloading images from unknown and

non-guaranteed environments such as Flickr, the processing

history of the images is typically unknown. Although we

can assume that most of the users of Flickr have no practi-

cal reason to publish a maliciously manipulated visual con-

tent, to minimize the quantity of such content, we manu-

ally reviewed all of the images and discarded those having

obvious traces of digital manipulation. This has been re-

sulted in 35,000 manually reviewed (cleaned) set of real

images. Some examples of pictured in this set are shown

in Fig. 4. The top ten popular camera brands represented in

Flickr were Apple (iPhone 7, etc.), Canon (EOS 5D Mark

III, etc.), Nikon (D750, etc.), Sony (ILCE-7M3, etc.), Fu-

jifilm (X-T2, etc.), Samsung (Galaxy S, etc.), Olympus (E-

M1MiarkII, etc.), Panasonic (DMC-FZ1000, etc.), Google

(Pixel 3, etc.), and Leica (Camera AG Q, etc.).

Figure 4: Some examples of real pictures in our dataset.

We also generated a same number of synthetically ma-

nipulated images using high variety of methods. As pointed

our earlier, advanced techniques such as GAN often bring

characteristic artifacts into images [62]. Such kinds of

artifacts might lead to overfittling of learning methods.

This has also been empirically confirmed by Cozzolino et

al. [12] where authors experimentally demonstrated CNN-

based approaches for image forgery detection tend to over-

fit to the source training data and perform poorly on new

and unseen manipulations. Therefore, to manipulate im-

ages we also used a high variety of core image processing

techniques.

Specifically, a random area of a random shape of images

has been manipulated, using one of the following types of

manipulations: copy-paste, splicing, and re-touching. Size

of the manipulated area has been randomly selected to be

from 5 percent to 30 percent of the image. Additionally, a

random combination of image processing operations have

been applied on the manipulated area. These operations are

based on JPEG (random compression level), blurring (vari-

ous kernels), contrast manipulation, various types of noise,

and resampling and interpolation using bilinear and bicubic

kernels. About half of the images have been manipulated in

this way. Some examples of such manipulated images are

shown in Fig. 5.

Figure 5: A few samples from the synthetically generated

dataset. On left is shown the real image, in middle the ma-

nipulated image (JPEG and noise used), and on right the

binary mask localizing the manipulated area. Sometimes

the manipulated area is not visible by naked eye (e.g., (b)).

To synthetically manipulate the second half, we em-

ployed advanced methods such as GAN or Inpainting.

Specifically, the following methods have been used to ma-

nipulate images: built-in OpenCV inpainting function, in-

paining method proposed in [61], and FaceApp [19] which

is currently one of the most popular face manipulation mo-

bile applications based on GAN in iOS and Android. Some

examples of such manipulated images are shown in Fig. 6

and Fig. 7.

Figure 6: On left is shown the real image, in middle the

manipulated image (using an Inpainting method [61]), and

on right the binary mask localizing the manipulated area.

To summarize, this dataset is formed by 70,000 images.

Half of them are real and the second half have been ma-

nipulated in a controlled manner. Binary masks of all ma-
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Figure 7: On left is shown the real image, in middle the

manipulated image (using FaceApp [19]), and on right the

binary mask localizing the manipulated area. It is interest-

ing to note that although the visible area of manipulation of

FaceApp is typically inside the face area, pixels of a larger

rectangular area around the face gets modified as a result of

face transform.

nipulated images localizing the manipulated areas are also

provided.

4.1. Real­Life Manipulated Images

We also collected a large set of real-life (uncontrolled)

manipulated images from the Internet (for example, see

Fig. 8). Specifically, 2,000 manipulated images created by

random people have been downloaded (URL of most im-

ages were obtained from [25]). For all of the manipulated

images, we also downloaded their real versions. Binary

masks localizing the manipulated areas for all manipulated

images have been created manually. Some examples of this

dataset are shown in Figures 8 and 9.

Figure 8: A real-life manipulated image. On left is shown

the real image, in middle the manipulated image, and on

right the binary mask localizing the manipulated area.

5. Experiments

We now demonstrate quantitative results of a few popu-

lar image forensic methods on the collected real-life dataset.

We applied the following methods on our dataset: NOI1

[40], CFA1 [22], BLK [33], ADQ1 [35], and ManTraNet

[60]. To evaluate methods, all images have been first resized

to 480×480 pixels. We computed false and true positive

rates (FPR and TPR) as a function of the detection thresh-

old, going from 0 to 1 and obtained the corresponding re-

Figure 9: A real-life manipulated image. On left is shown

the real image, in middle the manipulated image, and on

right the binary mask localizing the manipulated area. Bi-

nary masks of real-life manipulated images have been cre-

ated manually.

Method AUC

NOI1 [40] 58.6%

CFA1 [22] 48.7%

BLK [33] 59.6%

ADQ1 [35] 57.9%

ManTraNet [60] 74.8%

Figure 10 & Table 2: Obtained ROC and AUC.

ceiver operating characteristic (ROC) curve. Moreover, we

calculated the Area Under the receiver operating character-

istic Curve (AUC) [50]. Results are shown in Fig. 10 and

Tab 2.

As suggested by results, current methods have consider-

able limitations in their accuracy when applied on real-life

(unseen) image forgery. Typical undetected types of manip-

ulations are small manipulated areas, heavily compressed

images, images degraded with correlated noise, images with

multiple areas manipulated differently, etc.

6. Conclusion

In this work, we collected two large-scale and di-

verse datasets with a high variety of artifacts. We

hope collected datasets will contribute to facilitating fu-

ture research on training and testing methods and detec-

tion of manipulated visual content. Both datasets are

made publicly available for the research community at

http://staff.utia.cas.cz/novozada/db.
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