
Activity Detection in Untrimmed Videos Using Chunk-based Classifiers

Joshua Gleason*, Steven Schwarcz*, Rajeev Ranjan, Carlos D. Castillo, Jun-Cheng Chen,

Rama Chellappa

University of Maryland, College Park

gleason@umiacs.umd.edu, schwarcz@umiacs.umd.edu

*These authors contributed equally to this work

Abstract

Activity detection in untrimmed videos - the process of

detecting and localizing human activities in potentially long

videos - is a challenging problem in computer vision. We

propose an algorithm which is based on the proposition that

despite the differences between activity classification and

detection, a strong classifier can still be used to achieve

state-of-the-art performance in detection by breaking the

video into multiple overlapping chunks and classifying each

individually. We further introduce two new auxiliary tasks

which we call chunk inclusion and localization. The outputs

of these tasks, when carefully applied, can be used to dra-

matically improve performance. We call our method Chunk

Aggregation. It is straight-forward to implement and use,

and is agnostic to the backbone activity classification ar-

chitecture used. We also demonstrate the effectiveness of

chunk association by presenting results and a series of ab-

lation experiments on the THUMOS’14 and ActEV datasets.

1. Introduction

Activity classification in a long standing problem within

computer vision. Great progress has been made in activity

detection in the trimmed case [7, 11], where the activity

to be classified can reliably be expected to take up most of

the video. More challenging, however, is the untrimmed

case, wherein one or more activities may occur anywhere in

the video, often nothing of interest occurring in between the

activities. This setting, where activities must be detected in

addition to classified, generally calls for additional or alter-

nate techniques in order to achieve reasonable results.

With the advent of deep learning, many modern ap-

proaches to activity detection and localization have used

deep neural architectures to achieve state of the art per-

formance. Many such approaches draw on very sophisti-

cated architectures, making use of LSTMs [53, 54] or adap-

tations of object detection architectures such as Faster R-

I3D
I3D
I3D
I3D

I3D
I3D

Chunk	Generation Classification Aggregation

Figure 1. An overview of the system we present. Our procedure

has three stages: we first generate a set of chunks by breaking

up the video into overlapping pieces, then we classify each chunk

individually. In the last stage of our system, we aggregate the clas-

sified chunks in order to create our final activity detections.

CNN [9, 50] to spatio-temporal data.

We propose a comparatively simpler approach, leverag-

ing the strong progress that has been made in activity clas-

sification for trimmed videos. Our main contribution is to

show that a strong, carefully-trained activity classifier can

achieve state-of-the-performance in activity localization by

breaking the activity into many small overlapping chunks

and classifying each chunk individually. Further, by learn-

ing two auxiliary tasks and applying the learned output in

a clever way, it is possible to achieve even more significant

performance improvements beyond the state of the art.

The resulting technique, which we call Chunk Associa-

tion, is straight-forward to implement and use, and is ag-

nostic to the chosen backbone activity classification archi-

tecture. We therefore believe that it presents a very gen-

eral technique that can continue to be useful even as the

1107



state-of-the-art in trimmed activity or video classification

advances, with the backbone architecture replaced as newer,

better classification methods become available.

Our method also presents some very simple trade-offs

depending on the use case and hardware available to run

our algorithm. It can, for instance, be tuned to run faster

or slower by varying the input modality used, while still

maintaining a high level of performance.

We demonstrate the effectiveness of chunk association

by presenting results on the THUMOS’14 [25] dataset

for temporal activity localization. We also show that our

method can be extended to perform spatial localization as

well by performing experiments on the ActEV dataset for

sparse spatio-temporal localization [36]. Finally, we present

the results of a series of ablation experiments to better un-

derstand the components of our algorithm and validate the

design choices that we have made.

2. Related Work

In recent years, a significant amount of research has been

done on the problem of activity recognition. In this section

we distinguish between two types of activity recognition: 1)

activity classification, which refers to the problem of classi-

fying videos containing only one activity, where each video

is trimmed to the beginning and end of the activity, and 2)

activity detection which refers to the problem of determin-

ing where, if anywhere, activities are occurring in a video.

Despite significant progress made in activity classification,

robust systems capable of activity detection for general use

have remained elusive.

Activity Classification Following the success of deep

CNNs in image classification by AlexNet [31], a number of

early attempts were made to adapt CNN-based image clas-

sification methods to activity classification [30, 42, 56, 35].

One notable work is the two-stream CNN framework [42]

which was able to obtain state-of-the-art performance by

combining optical-flow and RGB using two parallel 2D

CNNs. Following the two-stream work, a number of ac-

tivity classification techniques were proposed which used

similar strategies [12, 13, 14, 47, 48, 44].

The I3D model was introduced along with the Kinetics

dataset [7]. I3D is a two-stream architecture which uses 3D

convolutions. While not unique for its use of 3D convolu-

tions [24, 44, 43], I3D was able to significantly outperform

other activity classification systems like C3D [43] by tak-

ing advantage of the carefully curated, large-scale Kinetics

dataset [19] and building a system that was well suited for

transfer-learning on other datasets.

Activity Detection Activity detection approaches can

broadly be categorized into proposal-based or end-to-end

systems. In proposal-based activity detection, a collection

of subsets of a video are generated to be considered as po-

tential activities. Proposals can be viewed as high-recall,

low-precision activity detections. They may be either de-

pendent or independent of the activity class. Once the pro-

posals are collected, classification is applied to distinguish

between true and false positives, and, in the case of class-

independent proposals, to determine the specific activity.

In 2014, many state of the art systems for activity de-

tection in unconstrained videos utilized Fisher vector repre-

sentation with dense trajectories evaluated over dense slid-

ing windows [45, 29, 37, 46]. Caba et al. [6] presented

an efficient proposal-based method using sparse dictionary

learning. The trend of using sparse methods was relatively

short-lived; however, as deep learning based approaches be-

came more prevalent. Particularly relevant to our method,

Gao et al. [16], motivated by advancements in object de-

tection, introduced the use of cascaded boundary regres-

sion for sliding window based proposals. This was found to

perform much better than other contemporary methods and

provides motivation for the temporal refinement component

of our system. Gleason et al. [18] propose a temporal re-

finement I3D system which utilizes off the shelf classifica-

tion with additional regression based temporal refinement.

Other approaches inspired by object-detection methods are

Dai et al. [9] and Xu et al. [50] which both use Faster R-

CNN[38]-based systems adapted for temporal activity de-

tection.

Research into proposal-based methods often focus on

improving proposal generation and using off-the-shelf CNN

classifiers [10, 5, 17]. Other works focus more on alter-

ations to the classification architecture for use in activity

classification and detection [40].

To get an idea of where our algorithm fits into this discus-

sion, in this work we present an algorithm which uses short

sliding window-based proposals, and focuses primarily on

modifications to off-the-shelf CNN classifiers, along with

improvements to proposal aggregation. By proposal aggre-

gation, we are referring to a post-processing step which is

used to combine multiple short proposals into a single ac-

tivity which is discussed in detail in Section 3.

An alternative to proposal-based activity detection is

all-in-one activity detection, which simultaneously clas-

sifies and localizes activities. Richard et al. [39] intro-

duced a probabilistic model for temporal activity detec-

tion that jointly models segmentation and classification.

Yuan et al. [55] introduce a method for temporal local-

ization by aggregating frame-wise features using an effi-

cient algorithm for computing structured maximal sums.

Hou et al. [21] proposed the tube convolutional neural net-

work (T-CNN) which generates tube proposals from video-

clips and performs activity classification and localization

using an end-to-end 3D-CNN. Kalogeiton et al. [28] extract

convolutional features from each frame of a video, and stack

them to learn spatial locations and activity scores.

108



3. Method

Our method is composed of three stages: chunk gen-

eration, classification, and aggregation. In the chunk gen-

eration stage, the video is broken down into overlapping

chunks of 64 frames each. These chunks are then fed into

a state-of-the-art video classification algorithm and classi-

fied according to their activity class. Critically, we also

equip our video classifier with two auxiliary tasks: “tem-

poral refinement” and a flag that determines if the activity

end points fall within the chunk, which we call “chunk in-

clusion”. These two tasks are easy to learn, but their output

plays a critical role in the aggregation stage, where chunks

are recombined into activity detections.

3.1. Chunk Generation

For each video, we construct a series of chunks Xi con-

sisting of n = 64 frames each. Chunk generation begins

by designating the first 64 frames of a given video to be the

first chunk, and then, moving in strides of s = 16 frames

at a times, progressively creating chunks out of every set

of 64 consecutive frames. Thus, each frame of the video

is included in at most 4 different chunks, and neighboring

chunks overlap by 48 frames. Algorithm 1 illustrates this

procedure.

Algorithm 1 Chunk generation for a single video.

1: t← 0
2: s← 16
3: chunks = empty list()
4: while t+ 64 ≤ video.length do

5: new chunk ← Chunk(t, t+ 64)
6: chunks.add(new chunk)
7: t← t+ s

8: return chunks

3.2. Classification

Chunk	�
�

I3D

FC

�

�

�

�

�

��,���

�

�

��,���

RGB

Optical
Flow

f

h

g

Figure 2. An illustration of chunk classification stage of our al-

gorithm. We extract 64 consecutive 224 × 224 RGB and optical

flow frames per chunk Xi. These are fed into I3D, and three out-

puts are produced: activity class scores pia, chunk inclusion scores

(pist, p
i

end), and temporal localization scores (vist, v
i

end)

The classification stage of our algorithm is built on ex-

isting video-classification methods. Since the video has al-

ready been divided into small, manageable chunks, each

chunk can be treated as an individual video and subse-

quently classified.

At the time of this writing, the most powerful open

source video classification algorithm is the Inflated 3D Con-

volution (I3D) architecture [7], we take the 64 frames that

compose it and compute optical flow for each one using the

TV-L1 optical flow algorithm [57]. We then randomly crop

the 256 × 256 frames into 224 × 224 and feed them into

I3D in a 2 stream configuration, similar to the original au-

thors in [7]. We also perform random horizontal flips for

additional augmentation. However, unlike [7], we train I3D

on three different tasks using 3 different branches: 1) an ac-

tivity classification branch f , 2) a chunk inclusion branch g,

and 3) a localization branch h. See Figure 2 for an outline of

our network architecture. In addition, we also make a minor

modification to the I3D architecture, and instead of averag-

ing the logits from the two streams to get final results, we

concatenate the features in the penultimate fully connected

layer and produce a single set of logits.

Activity classification is the standard task for which I3D

was designed. We designate a chunk Xi as belonging to an

activity class a if at least 55% percent of the chunk con-

tains an instance of that activity class, with ties going to the

activity that occurs on the most frames. We thus train our

classifier using standard cross-entropy loss:

Li
cls =

ncls
∑

a=0

−yia · log(pa), (1)

where ncls is the number of classes, and yia is an indicator

that is 1 when chunk Xi is assigned class a and 0 other-

wise. pia is the softmax output of video classification branch

f which corresponds to activity class a, with a = 0 desig-

nating that no activity has occurred.

The chunk-inclusion task on a chunk Xi simply performs

two classification tasks: one to determine if the activity

began within Xi, and another to determine if the activity

ended within Xi. The inclusion ground truth labels, which

we denote yist and yiend for start and end inclusion respec-

tively, are trivial to compute during chunk generation. We

learn these with a cross entropy loss as well:

Li
inc =

1

2

(

bce(pist, y
i
st)

)

+
(

bce(piend, y
i
end)

)

(2)

where pist and piend correspond to the two separate sigmoid

outputs of the chunk inclusion branch g. bce corresponds to

the standard binary-cross entropy loss function.

The final task we learn is temporal refinement, which

is performed similarly to [18]. Whenever an activity starts

or ends within a chunk, we learn either of two temporal

109



regression parameters rst or rend, which we compute in the

ground truth as

(rist, r
i
end) =

(

t̂st − tic
n′

,
t̂end − tic

n′

)

. (3)

where tic is the center of chunk Xi, (t̂st ,t̂end) are the

start and end frames of the ground truth activity assigned

to chunk i, and n′ = n/2, where n = 64 is the chunk

length. As an example, if the start and end of the chunk

were perfectly aligned with the ground truth, we would have

(rist, r
i
end) = (−1, 1).

We train these values using a smoothL1 loss [38]. The

temporal localization branch h produces two regression out-

puts vi = (vist, v
i
end) according to

Lloc = yist · smoothL1(rst − vist)

+ yiend · smoothL1(rend − viend).
(4)

We note that the yist and yiend terms prevent the learning

of regression when an activity does not begin or end within

the chunk.

Our final loss can thus be written:

Lfull = Lcls + λIa≥1(Linc + Lloc), (5)

where Ia≥1 is an indicator function that is equal to 1 when

the ground truth action has an index greater than 0, and is

equal to 0 otherwise (i.e. is equal to 1 when the ground truth

does not designate ”no activity”). λ is a weight parameter

that we experimentally set to λ = 0.25.

3.3. Chunk Aggregation

Breaking the video into chunks and classifying the

pieces is a straight-forward procedure, but after the chunks

have been classified, it is not immediately obvious how to

recombine them in a way that generates temporally accurate

and consistently correct activity detections. As it turns out,

however, it is still possible to achieve excellent performance

simply by merging adjacent chunks of the same class.

Specifically, our algorithm starts by assigning all chunks

Xi with assigned activity classes other than ”no activity” to

their own detection di. If Xi and Xj are 2 adjacent chunks

assigned to the same activity class, we merge di and dj into

a new chunk d′.
Inclusion Thesholding Simply merging all neighboring

chunks in this manner would be sufficient to achieve activ-

ity detection performance that is comparable to the state-

of-the-art (see Section 4.2.2); however, it is only when we

make use of the learned chunk inclusion and localization

parameters during aggregation that we achieve the best per-

formance. Thus, we make use of the learned inclusion infor-

mation at this stage by not connecting chunks when at least

one of the chunks directly predicts that it should not have

a neighbor. Specifically, we do not merge adjacent chunks

Xi and Xj if Xj immediately precedes Xi and pist > Tinc,

which indicates that the algorithm has determined that the

activity begins in Xi. Similarly, we do not merge Xi and

Xj if Xi immediately precedes Xj and piend > Tinc. In our

experiments, we use the value Tinc = 0.8 and perform non-

maxima suppression on the pist and piend before merging,

wherein we set all pist and piend to 0 if they are not higher

than their immediate neighbors. Except when prohibited by

the inclusion values, we then merge all chunks to create our

activity detections.

Temporal Refinement As a final measure, we take the

earliest and latest chunks in each detection (which we de-

note Xi and Xj respectively) and apply the learned tem-

poral refinement values vist and vjend to Xi and Xj by re-

versing the computation in Equation 3. More specifically,

our new start time is tic + n′vist and our new end time is

tjc + n′vjend.

3.4. Spatio­Temporal Activity Detection

Our algorithm can also be extended to work in the con-

text of spatio-temporal activity detection, in the situation

where activities are sparse both temporally and spatially. In

this context, an action may take up only a small portion of

the screen as shown in Figure 5, and many actions may be

happening at the same time in disparate parts of the frame.

In this context, merely breaking the video into temporal

chunks would not be sufficient to perform proper detection,

since we would not be performing spatial localization.

Thus, to extend our method to spatio-temporal local-

ization, we employ an additional proposal-generation stage

similar to [18]. We begin by performing 2D object detec-

tion on a per-frame basis to identify the people and ve-

hicles within the video, in this case using Mask-RCNN

[20] . We represent these detections as a 3-dimensional

feature (x, y, t) where x and y represent the center of the

detection’s bounding box in pixel coordinates and t is the

frame number. We then use Divisive Hierarchical Cluster-

ing [34, 26] to generate a linkage tree of detections from

these 3-dimensional features. We break this tree at various

levels to produce clusters of various sizes. For complete

details on cluster generation see [18].

We treat each of these clusters the same as we treat entire

videos in the temporal localization task, breaking them into

chunks and classifying the chunks individually. When we

define the bounds for a chunk, we use the bounding box

of all the 2D detections that fall within the chunk. When

aggregating, we merge chunks that are within 16 frames of

each other and have spatial IoU of at least 0.1.

110



4. Experiments

In this section, we present a series of experiments de-

signed to help understand the impact of various components

of our system. The majority of experiments presented in this

section were performed on the THUMOS’14 action detec-

tion dataset [25]. To show that this approach generalizes to

other scenarios we provide additional evaluation results on

the ActEV [36] dataset for spatio-temporal activity detec-

tion.

4.1. Training

We train the backbone I3D network on THUMOS’14

using SGD with learning rate 0.01, momentum 0.9, and

weight decay 0.0005. We train on 8 Nvidia 1080Ti GPUs

for a total of 2 epochs, lowering the learning rate to 0.001 in

the second epoch. We use a batch size of 24 for two-stream

training experiments (RGB and optical flow) and 48 for sin-

gle stream experiments (optical flow or RGB individually).

We initialize I3D with weights pre-trained on the Kinetics

dataset [7].

For most of the time, no activities are happening and if

we trained on all the chunks of our system, we would in-

evitably bias heavily towards the “no activity” class. Thus,

when creating chunks for training, we carefully control the

number of chunks we expose the network to, enforcing that

only 10% of the samples seen by the network are negatives.

4.2. THUMOS’14

Figure 3. Sample frames from videos within the THUMOS’14

dataset.

4.2.1 Dataset

THUMOS’14 is a temporal action detection dataset which

consists of 2765 trimmed training videos, 200 untrimmed

validation videos, and 213 untrimmed test videos. Since the

training data is trimmed, we follow the common practice

and perform the majority of our experiments by training on

the validation set and evaluating on the test set [50, 18, 17,

15]. The majority of ablation experiments are performed us-

ing a single-stream configuration, using optical flow frames,

except where otherwise mentioned.

The only exception to the aforementioned train/evaluate

strategy is for experiments used to select the hyperparame-

ters described in Section 3 (e.g. Tinc and s) . For these ex-

periments, we instead use a 70/30 split of the THUMOS val-

idation set to perform training and validation respectively,

so as not to evaluate on the test split. This ensures that

we don’t overfit the hyperparameters of our method to the

test data. In order to enforce that the 70/30 split of videos

contains the appropriate number of instances of each class,

we employ the simple strategy of repeatedly sampling ran-

dom 70/30 splits until the number of training samples for

each class is between 1.05 and 3.38 times the number of

instances in validation.

Figure 3 shows sample frames from videos within the

THUMOS’14 dataset. THUMOS performance is measured

in the provided THUMOS’14 scoring tool using the mean

Average Precision (mAP) metric, performed at several dif-

ferent temporal Intersection over Union (tIoU) thresholds.

Table 1 shows the final performance of our algorithm on

THUMOS’14, as compared to other published algorithms.

To achieve these final numbers, we use the I3D backbone in

a two-stream configuration, taking both the RGB and opti-

cal flow frames as inputs.

tIoU 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Karaman et al. [29] 4.6 3.4 2.4 1.4 0.9 - -

Oneata et al. [37] 36.6 33.6 27.0 20.8 14.4 - -

Wang et al. [46] 18.2 17.0 14.0 11.7 8.3 - -

Caba et al. [6] - - - - 13.5 - -

Richard et al. [39] 39.7 35.7 30.0 23.2 15.2 - -

Shou et al. [41] 47.7 43.5 36.3 28.7 19.0 10.3 5.3

Yeung et al. [53] 48.9 44.0 36.0 26.4 17.1 - -

Yuan et al. [54] 51.4 42.6 33.6 26.1 18.8 - -

Escorcia et al. [10] - - - - 13.9 - -

Buch et al. [5] - - 37.8 - 23.0 - -

Shou et al. [40] - - 40.1 29.4 23.3 13.1 7.9

Yuan et al. [55] 51.0 45.2 36.5 27.8 17.8 - -

Buch et al. [4] - - 45.7 - 29.2 - 9.6

Gao et al. [16] 60.1 56.7 50.1 41.3 31.0 19.1 9.9

Hou et al. [22] 51.3 - 43.7 - 22.0 - -

Dai et al. [9] - - - 33.3 25.6 15.9 9.0

Gao et al. [17] 54.0 50.9 44.1 34.9 25.6 - -

Xu et al. [50] 54.5 51.5 44.8 35.6 28.9 - -

Zhao et al. [59] 60.3 56.2 50.6 40.8 29.1 - -

Huang et al. [23] - - - - 27.7 - -

Yang et al. [51] - - 44.1 37.1 28.2 20.6 12.7

Chao et al. [8] 59.8 57.1 53.2 48.5 42.8 33.8 20.8

Alwassel et al. [2] - - 51.8 42.4 30.8 20.2 11.1

Gao et al. [15] - - - - 29.9 - -

Lin et al. [32] - - 53.5 45.0 36.9 28.4 20.0

Gleason et al. [18] 52.1 51.4 49.7 46.1 37.4 26.2 15.2

Yang et al. [52] - - 51.8 41.5 32.1 22.9 14.7

Murtaza et al. [33] - - 54.9 47.2 41.5 37.5 31.6

Ours 67.41 66.96 62.6 56.87 48.99 39.19 27.82

Table 1. Comparison to other algorithms on the THUMOS’14

based on the mAP metric at various temporal IoUs. Missing en-

tries indicate that results are not available. The best performance

at each tIoU is indicated in bold.

111



Inclusion Localization 0.1 0.5 0.7

No No 59.09 32.19 16.08

Yes No 61.53 37.04 21.03

No Yes 60.45 35.9 19.25

Yes Yes 64.56 48.35 28.22
Table 2. The effects of chunk inclusion and localization on perfor-

mance at 3 different tIoU thresholds. All results are attained using

optical flow as the only input modality. We also note that for this

table, when inclusion or temporal localization are used, we also

apply inclusion thresholding or temporal refinement respectively.

Best results are in bold.

Inclusion Localization 0.1 0.5 0.7

No No 61.68 31.03 11.46

Yes No 64.06 40.55 15.68

No Yes 61.4 37.51 21.0

Yes Yes 64.56 48.35 28.22
Table 3. The result of training the system using inclusion and lo-

calization loss but selectively ignoring those results during evalu-

ation. This is to demonstrate that the performance improvements

are not solely a result of multi-task learning.

4.2.2 Ablation experiments

Inclusion and Localization Chunk inclusion and localiza-

tion (i.e. the losses Linc and Lloc) are the key novelties of

our approach, providing strong improvements to our algo-

rithm’s performance. We demonstrate the importance of

these tasks by performing two separate experiments. The

first of these, shown in Table 2, indicates our performance

when we remove each of these components from training

entirely. In both cases, performance drops significantly. Un-

surprisingly, both localization loss and inclusion loss help

with temporal localization so the greatest impact can be

seen at the higher tIoU values where precise start and end

times are most important.

We also perform another set of experiments where the in-

clusion and localization values are learned, but are not used

during inference. These results are shown in Table 3. Here

we see the importance of performing the inclusion thresh-

olding and temporal refinement, since removing either one

significantly decreases performance. Additionally, the im-

provements from each are not independent since activating

both of them together yields a bigger increase in perfor-

mance than they each add individually; for instance, tIoU

at 0.7 goes up about 4 points when inclusion thresholding is

turned on and 10 points when temporal refinement is used,

but nearly 17 points when both are used together.

Input Modality I3D can be trained using only the raw

RGB frames of the input chunks, optical flow frames, or

both at once. In Table 4, we compare the results of training

on these three modalities. Our key observation is that opti-

cal flow significantly out-performs RGB, while combining

both modalities into a two-stream network is optimal, simi-

tIoU 0.1 0.5 0.7

RGB 61.56 42.56 22.85

Flow 64.56 48.35 28.22

Joint (RGB+Flow) 67.41 49.0 27.82
Table 4. Classification accuracy for the three different input modal-

ities on the THUMOS’14 dataset. Each row represents one of the

modalities tested at 3 different temporal IoU thresholds. Best re-

sults are in bold.

tIoU 0.1 0.5 0.7

2 Skips 58.68 35.93 20.00

1 Skip 61.57 38.46 21.26

No Skips 64.56 48.35 28.22
Table 5. The proposed aggregation algorithm compared to an alter-

nate aggregation algorithm in which chunks can be matched even

if there are chunks in between of a different class. “1 Skip” and

“2 Skip” refer to algorithms that merge chunks with one or two

different entries between them, and “No Skips” is the algorithm

we describe in Section 3.3. Best results are in bold.

lar to the observations made by [7] in the original I3D paper.

The choice of modality also has important ramifications for

the run-time of the algorithm, which we explore in more

detail in Section 4.3.

0.0

0.5

1.0
Video video_test_0000073

gt ThrowDiscus

0 500 1000 1500 2000 2500 3000
frame number

0.0

0.5

1.0

co
nf

net ThrowDiscus

Figure 4. A plot of the network’s per-chunk predictions (bottom)

vs. the ground truth (top) on a sample video in the test set. The

bottom plot shows the confidence value of each chunk in the se-

quence. Chunk confidence is plotted from the location of the

chunk’s center frame. For more intuitive visualization, the confi-

dence values are suppressed to zero when the ThrowDiscuss class

is not the maximal response for the chunk.

Aggregation In order to motivate our choice of aggrega-

tion algorithm, we present in Figure 4, a plot that shows the

predictions of our chunks mapped against the ground truth

of a given video. What we find is that, in general, chunks

appear to do a good job classifying activities on their own,

which motivates our choice to aggregate by connecting ad-

jacent chunks.

In Table 5, we compare our chosen chunk aggregation

algorithm to a slightly modified algorithm where, instead of

merely connecting adjacent chunks, we also connect chunks

112



Mode # GPUs sec/chunk
Forward

FPS

Total

FPS

RGB 1 0.055 235.35 235.35

Flow 1 0.046 291.67 22.77

RGB+Flow 1 0.108 126.11 20.65

RGB 8 0.026 467.74 467.74

Flow 8 0.0208 612.0 121.93

RGB+Flow 8 0.0467 268.54 97.17
Table 6. Timing analysis of our algorithm under various configu-

rations. “Forward FPS” refers to the frame rate of a forward pass

through the network, while “Total FPS” includes the time to pro-

cess input (i.e. optical flow computation). Timing of disk access

was not included in this analysis.

that are of the same class with up to one or two differing

chunks in between. We find that this actually decreases per-

formance, which suggests that chunks being misclassified

in the middle of activities are not a serious issue in THU-

MOS’14, and allowing skipping only hurts performance by

merging chunks that should not be merged.

4.3. Timing­Performance Trade­offs

Here, we analyze the inference speed of our system, and

show that with the right modifications our system can still

achieve near state-of-the-art performance while running at

speeds well above real time on a single GPU. Table 6 shows

the results of these experiments. When optical flow is used,

the vast majority of computation time is spent extracting

the optical flow frames, and therefore multiple GPUs are

required to perform real time inference. On the other hand,

when inference is performed using only RGB frames, it is

possible to perform computations significantly faster. With

RGB input, a single GPU is enough to achieve process-

ing speeds of 235 FPS, significantly faster than real time.

In terms of performance, Table 4 shows that RGB, while

worse than optical flow or RGB+optical flow, still achieves

results competitive with the previous state-of-the-art. Disk

read times were not considered in this timing analysis.

Thus, in addition to being simple, our algorithm is very

well suited to real-world applications where speed would

be an important factor. If, in addition, detection needs to

be performed on live streamed video, then merely introduc-

ing a several-second lag would be sufficient to detect new

activities as they happen. Further, since optical flow com-

putation is the only stage of the algorithm with significant

computational overhead, it may also be possible to achieve

the state-of-the-art performance of optical flow with speeds

much closer to that of RGB by estimating the flow or motion

information directly from compressed video [49, 58, 48].

Method P-Miss N-MIDE

Gleason et al. [18] 67.50% 0.239

Ours 61.71% 0.181
Table 7. ActEV validation dataset results. In the left column we

report weighted average probability of miss (weighted p-miss),

where the weighting is applied to account for any class imbalance.

In the right column we report the N-MIDE metric, where lower

N-MIDE scores refer to better temporal localization. Both metrics

are reported with a fixed rate of false alarm of 0.15.

Method P-Miss

Aakur et al. [1] 93.4%

Xu et al. [50] 91.30%

Gleason et al. [18] 75.03%

MUDSML 69.85%

Ours 76.44%
Table 8. ActEV test dataset results. Here we report the weighted

probability of miss of our system, which was evaluated on an in-

dependent evaluation server [36]. The metric is reported at a rate

of false alarm of 0.15. To the best of our knowledge the top per-

former, known as MUSDML, has not published their approach.

4.4. ActEV: Spatio­Temporal Detection

4.4.1 Dataset

The ActEV dataset [36] is a spatio-temporal activity detec-

tion dataset featuring 18 different activities over 64 training

videos, 54 validation videos, and 246 test videos with an-

notations withheld. All videos within the ActEV dataset

are high resolution (1200 × 720 or 1920 × 1080) yet the

subjects performing actions within the videos are very tiny

by comparison, generally ranging from 20 to 180 pixels in

height. Therefore, actions within the ActEV dataset tend

to be spatially sparse, taking up only a very small portion

of the scene. One of the primary challenges of the ActEV

dataset is to intelligently avoid processing extraneous pix-

els. We do this by introducing a proposal-based method for

generating chunks, as discussed in Section 3.4.

4.4.2 Results

In this section we report the results of our method on the

ActEV validation and test sets. The primary metric for

ActEV is probability of miss (p-miss) at a false alarm rate of

0.15 which is computed using the provided evaluation tool

downloaded from Github [27]. We also report the N-MIDE

metric on validation for which lower scores correspond to

better temporal localization. Both of these metrics are de-

scribed in detail in TRECVID 2018 [3].

Table 7 shows the results of our algorithm on the ActEV

validation data using the method described in Section 3.4.

In the table we included validation results using the TRI3D

system described in [18], which, to our knowledge are the

best published results on ActEV. The public leaderboard

113



Figure 5. Spatial sparsity in ActEV. On the left is an example frame

from ActEV, and on the right is an example frame from THU-

MOS’14. The green box in the ActEV image shows the spatial lo-

cation of an instance of the Closing activity which covers only

a small percentage of the overall image. Contrast this to the THU-

MOS’14 image where the activity Cricket Bowling takes up

a much greater proportion of the image. This figure was original

presented in [18].

for the 2018 ActEV challenge was available at [36] where

the top performing system achieves a probability of miss

of 69.85% at a rate of false alarm of 0.15. Since the top

performing system is unpublished as of the submission of

this manuscript, it is difficult to comment on where the

gain in performance comes from. This is particularly true

since teams were allowed and encouraged to collect and

use proprietary data to improve performance. Our system

significantly out-performed the only other published sys-

tems which we know to have been evaluated on ActEV

test [1, 50].

We observe that while we achieve a significant improve-

ment over TRI3D [18] on the validation dataset, our system

performs slightly worse on the test split as shown in Ta-

ble 8. Since the annotations are not available for the test

split it is difficult to draw any conclusions from this phe-

nomenon, however, by contrasting our approach to TRI3D

we have some thoughts on this.

On the validation dataset, our method outper-

forms TRI3D on all but 3 of the 18 activities:

activity carrying(+6.1%), Closing(+5.4%),

and Loading(+5.4%), where the deltas reported here are

the differences in average p-miss at 0.15 rate of false alarm.

This indicates that the discrepancy is likely not due to

some sort of biasing of our method towards certain actions.

We also rule out the detector and clustering algorithm as

being the cause of the discrepancy as both TRI3D and our

method use the same approach. The difference between

our algorithm and TRI3D at the core is that we use short,

overlapping chunks, which are then aggregated, as opposed

to varying length cuboids which are not aggregated. Our

hypothesis is that the activities in the test dataset are more

difficult to determine given the short temporal spans, and

instead benefit from the high level context provided by long

cuboids. We leave it to future work to test this hypothesis

by extending our system to incorporate chunks of varying

length.

5. Conclusion

We have presented a simple but effective approach to

activity detection and classification in untrimmed videos.

We have shown, through empirical analysis on the THU-

MOS’14 and ActEV datasets, that it is in fact possible to

achieve results in untrimmed activity detection comparable

to state-of-the art simply by making use of strong existing

activity classification systems, and that with the addition of

two auxiliary tasks it is possible to push these results signif-

icantly farther.

Acknowledgments

This research is based upon work supported by the Of-

fice of the Director of National Intelligence (ODNI), Intel-

ligence Advanced Research Projects Activity (IARPA), via

IARPA R&D Contract No. D17PC00345. The views and

conclusions contained herein are those of the authors and

should not be interpreted as necessarily representing the of-

ficial policies or endorsements, either expressed or implied,

of ODNI, IARPA, or the U.S. Government. The U.S. Gov-

ernment is authorized to reproduce and distribute reprints

for Governmental purposes notwithstanding any copyright

annotation thereon.

References

[1] S. Aakur, D. Sawyer, and S. Sarkar. Fine-grained action de-

tection in untrimmed surveillance videos. In 2019 IEEE Win-

ter Applications of Computer Vision Workshops (WACVW),

pages 38–40. IEEE, 2019. 7, 8

[2] H. Alwassel, F. Caba Heilbron, and B. Ghanem. Action

search: Spotting actions in videos and its application to tem-

poral action localization. In The European Conference on

Computer Vision (ECCV), 2018. 5

[3] G. Awad, A. Gov, A. Butt, K. Curtis, Y. Lee, y. Gov,

J. Fiscus, D. Joy, A. Delgado, A. Smeaton, Y. Graham,

W. Kraaij, G. Qunot, J. Magalhes, and S. Blasi. Trecvid

2018: Benchmarking video activity detection, video cap-

tioning and matching, video storytelling linking and video

search. 04 2019. 7

[4] S. Buch, V. Escorcia, B. Ghanem, L. Fei-Fei, and J. Niebles.

End-to-end, single-stream temporal action detection in

untrimmed videos. In Proceedings of the British Machine

Vision Conference (BMVC), 2017. 5

[5] S. Buch, V. Escorcia, C. Shen, B. Ghanem, and J. C. Niebles.

Sst: Single-stream temporal action proposals. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017. 2, 5

[6] F. Caba Heilbron, J. Carlos Niebles, and B. Ghanem. Fast

temporal activity proposals for efficient detection of human

actions in untrimmed videos. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2016. 2, 5

[7] J. Carreira and A. Zisserman. Quo vadis, action recognition?

a new model and the kinetics dataset. In proceedings of the

114



IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 6299–6308, 2017. 1, 2, 3, 5, 6

[8] Y.-W. Chao, S. Vijayanarasimhan, B. Seybold, D. A. Ross,

J. Deng, and R. Sukthankar. Rethinking the faster r-cnn ar-

chitecture for temporal action localization. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018. 5

[9] X. Dai, B. Singh, G. Zhang, L. S. Davis, and Y. Q. Chen.

Temporal context network for activity localization in videos.

In Proceedings of the IEEE International Conference on

Computer Vision (ICCV), 2017. 1, 2, 5

[10] V. Escorcia, F. C. Heilbron, J. C. Niebles, and B. Ghanem.

Daps: Deep action proposals for action understanding. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), 2016. 2, 5

[11] C. Feichtenhofer, H. Fan, J. Malik, and K. He. Slowfast net-

works for video recognition. CoRR, abs/1812.03982, 2018.

1

[12] C. Feichtenhofer, A. Pinz, and R. Wildes. Spatiotemporal

residual networks for video action recognition. In Advances

in neural information processing systems, pages 3468–3476,

2016. 2

[13] C. Feichtenhofer, A. Pinz, and R. P. Wildes. Spatiotemporal

multiplier networks for video action recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 4768–4777, 2017. 2

[14] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional

two-stream network fusion for video action recognition. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1933–1941, 2016. 2

[15] J. Gao, K. Chen, and R. Nevatia. Ctap: Complementary tem-

poral action proposal generation. In The European Confer-

ence on Computer Vision (ECCV), 2018. 5

[16] J. Gao, Z. Yang, and R. Nevatia. Cascaded boundary regres-

sion for temporal action detection. 2017. 2, 5

[17] J. Gao, Z. Yang, C. Sun, K. Chen, and R. Nevatia. Turn tap:

Temporal unit regression network for temporal action pro-

posals. In Proceedings of the IEEE International Conference

on Computer Vision (ICCV), 2017. 2, 5

[18] J. Gleason, R. Ranjan, S. Schwarcz, C. D. Castillo, J.-C.

Cheng, and R. Chellappa. A proposal-based solution to

spatio-temporal action detection in untrimmed videos. 2019

IEEE Winter Conference on Applications of Computer Vision

(WACV), pages 141–150, 2018. 2, 3, 4, 5, 7, 8

[19] K. Hara, H. Kataoka, and Y. Satoh. Can spatiotemporal 3d

cnns retrace the history of 2d cnns and imagenet? In Pro-

ceedings of the IEEE conference on Computer Vision and

Pattern Recognition, pages 6546–6555, 2018. 2

[20] K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask r-

cnn. In Proceedings of the IEEE International Conference

on Computer Vision, pages 2961–2969, 2017. 4

[21] R. Hou, C. Chen, and M. Shah. Tube convolutional neural

network (t-cnn) for action detection in videos. In The IEEE

International Conference on Computer Vision (ICCV), 2017.

2

[22] R. Hou, R. Sukthankar, and M. Shah. Real-time temporal ac-

tion localization in untrimmed videos by sub-action discov-

ery. In Proceedings of the British Machine Vision Conference

(BMVC), 2017. 5

[23] J. Huang, N. Li, T. Zhang, G. Li, T. Huang, and W. Gao. Sap:

Self-adaptive proposal model for temporal action detection

based on reinforcement learning. In The Thirty-Second AAAI

Conference on Artificial Intelligence (AAAI-18), 2018. 5

[24] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural

networks for human action recognition. IEEE transactions

on pattern analysis and machine intelligence, 35(1):221–

231, 2013. 2

[25] Y.-G. Jiang, J. Liu, A. Roshan Zamir, G. Toderici, I. Laptev,

M. Shah, and R. Sukthankar. THUMOS challenge: Ac-

tion recognition with a large number of classes. http:

//crcv.ucf.edu/THUMOS14/, 2014. 2, 5

[26] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source

scientific tools for Python, 2001–. 4

[27] D. Joy. Actev scorer. https://github.com/

usnistgov/ActEV_Scorer/tree/v0.3.0, 2018. 7

[28] V. Kalogeiton, P. Weinzaepfel, V. Ferrari, and C. Schmid.

Action tubelet detector for spatio-temporal action localiza-

tion. In The IEEE International Conference on Computer

Vision (ICCV), 2017. 2

[29] S. Karaman, L. Seidenari, and A. Del Bimbo. Fast saliency

based pooling of fisher encoded dense trajectories. In ECCV

THUMOS Workshop, 2014. 2, 5

[30] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei. Large-scale video classification with convo-

lutional neural networks. In Proceedings of the IEEE con-

ference on Computer Vision and Pattern Recognition, pages

1725–1732, 2014. 2

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012. 2

[32] T. Lin, X. Zhao, H. Su, C. Wang, and M. Yang. Bsn: Bound-

ary sensitive network for temporal action proposal gener-

ation. In The European Conference on Computer Vision

(ECCV), 2018. 5

[33] F. Murtaza, M. H. Yousaf, S. Velastin, and Y. Qian. End-

to-end temporal action detection using bag of discriminant

snippets (bods). IEEE Signal Processing Letters, PP:1–1, 12

2018. 5

[34] D. Mllner. Modern hierarchical, agglomerative clustering

algorithms, 2011. 4

[35] F. Negin and F. Bremond. Human action recognition in

videos: A survey. INRIA Technical Report, 2016. 2

[36] NIST. Activity extended video (actev) prize challenge,

https://actev.nist.gov/prizechallenge. 2, 5, 7, 8

[37] D. Oneata, J. Verbeek, and C. Schmid. The lear submission

at thumos 2014. 2014. 2, 5

[38] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

Advances in neural information processing systems, pages

91–99, 2015. 2, 4

[39] A. Richard and J. Gall. Temporal action detection using a sta-

tistical language model. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2016. 2, 5

115



[40] Z. Shou, J. Chan, A. Zareian, K. Miyazawa, and S.-F. Chang.

Cdc: Convolutional-de-convolutional networks for precise

temporal action localization in untrimmed videos. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 1417–1426, 2017. 2, 5

[41] Z. Shou, D. Wang, and S.-F. Chang. Temporal action local-

ization in untrimmed videos via multi-stage cnns. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016. 5

[42] K. Simonyan and A. Zisserman. Two-stream convolutional

networks for action recognition in videos. In Advances

in neural information processing systems, pages 568–576,

2014. 2

[43] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.

Learning spatiotemporal features with 3d convolutional net-

works. In Proceedings of The IEEE International Confer-

ence on Computer Vision (ICCV), 2015. 2

[44] G. Varol, I. Laptev, and C. Schmid. Long-term temporal

convolutions for action recognition. IEEE transactions on

pattern analysis and machine intelligence, 40(6):1510–1517,

2018. 2

[45] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense tra-

jectories and motion boundary descriptors for action recog-

nition. International journal of computer vision, 103(1):60–

79, 2013. 2

[46] L. Wang, Y. Qiao, and X. Tang. Action recognition and de-

tection by combining motion and appearance features. 2014.

2, 5

[47] L. Wang, Y. Qiao, and X. Tang. Action recognition with

trajectory-pooled deep-convolutional descriptors. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 4305–4314, 2015. 2

[48] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and

L. Van Gool. Temporal segment networks: Towards good

practices for deep action recognition. In European confer-

ence on computer vision, pages 20–36. Springer, 2016. 2,

7

[49] C.-Y. Wu, M. Zaheer, H. Hu, R. Manmatha, A. J. Smola,

and P. Krähenbühl. Compressed video action recognition.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 6026–6035, 2018. 7

[50] H. Xu, A. Das, and K. Saenko. R-c3d: Region convolutional

3d network for temporal activity detection. In Proceedings

of the IEEE International Conference on Computer Vision

(ICCV), 2017. 1, 2, 5, 7, 8

[51] K. Yang, P. Qiao, D. Li, S. Lv, and Y. Dou. Exploring tempo-

ral preservation networks for precise temporal action local-

ization. In The Thirty-Second AAAI Conference on Artificial

Intelligence (AAAI-18), 2018. 5

[52] K. Yang, P. Qiao, D. Li, S. Lv, and Y. Dou. Exploring tem-

poral preservation networks for precise temporal action lo-

calization. In AAAI, 2018. 5

[53] S. Yeung, O. Russakovsky, G. Mori, and L. Fei-Fei. End-

to-end learning of action detection from frame glimpses in

videos. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2016. 1, 5

[54] J. Yuan, B. Ni, X. Yang, and A. A. Kassim. Temporal ac-

tion localization with pyramid of score distribution features.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016. 1, 5

[55] Z.-H. Yuan, J. C. Stroud, T. Lu, and J. Deng. Temporal ac-

tion localization by structured maximal sums. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017. 2, 5

[56] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan,

O. Vinyals, R. Monga, and G. Toderici. Beyond short snip-

pets: Deep networks for video classification. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 4694–4702, 2015. 2

[57] C. Zach, T. Pock, and H. Bischof. A duality based approach

for realtime tv-l 1 optical flow. In Joint Pattern Recognition

Symposium, pages 214–223. Springer, 2007. 3

[58] B. Zhang, L. Wang, Z. Wang, Y. Qiao, and H. Wang.

Real-time action recognition with deeply transferred mo-

tion vector cnns. IEEE Transactions on Image Processing,

27(5):2326–2339, 2018. 7

[59] Y. Zhao, Y. Xiong, L. Wang, Z. Wu, X. Tang, and D. Lin.

Temporal action detection with structured segment networks.

In Proceedings of the IEEE International Conference on

Computer Vision (ICCV), 2017. 5

116


