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Abstract

Real-time detection of spatio-temporal sparse activities

in untrimmed videos is a challenging problem. In this

work, we present the details of our proposed solution.

We begin with a slow baseline implementation of a previ-

ously state-of-the-art system [13] and redesign it to achieve

real-time performance for detecting 37 activities in the

ActEV19 Sequestered Data Leaderboard [4]. This is pri-

marily achieved by introducing speed related hyperparam-

eters into the baseline approach. A tradeoff analysis is per-

formed to assist in hyperparameter selection which results

in a real-time, high quality action detection system. Our

system achieves an AUDC score of 0.476 on the ActEV19

Sequestered Data Leaderboard.

1. Introduction

The goal of this work is to produce a system for detect-

ing activities in untrimmed videos which runs in real-time

with high accuracy on a large number of human and vehi-

cle activities. By real-time we mean that the time between

when video files are provided to the system until the time

that all detected activities are reported is less than the total

run-time duration of the input videos. Or to put it another

way, a system with relative time as reported on the ActEV19

Sequestered Data Leaderboard (SDL) of at most one.

In principle, the problem seems similar to action de-

tection on common untrimmed video datasets such as

AVA [14], THUMOS [18], and ActivityNet [8]. In prac-

tice, systems that perform well on these datasets may not

perform as well on untrimmed security videos. For exam-

ple, a baseline re-implementation of R-C3D [27] submitted

to the ActEV19 SDL [4] performed poorly. Qualitatively

this behavior may be explained due to particular differences

in input domain. For example, videos in MEVA [1] and

ActEV19 TRECVID [2] have a very small spatial extent,

often spanning less than 5% of pixels. Comparatively, the

previously mentioned datasets often contain videos sam-

pled from entertainment sources like movies or internet

videos which usually have activities appearing front-and-

center with high spatial extent. Similar to the way special

considerations are needed for small object detection, spe-

cial considerations also need to be taken when considering

spatially sparse activity detection.

Such domain differences are one motivation for choos-

ing to start with a baseline implementation of the system

proposed by Gleason et al. [13]. This system, which shall

henceforth be referred to as the baseline system, was de-

signed for the DIVA 1.A. dataset, which is a subset of the

ActEV19 TRECVID dataset (Section 3). This is a previ-

ously state-of-the-art action detection system for untrimmed

security videos. Another reason we start with this method

is that it utilizes spatial information of activities, but does

not require expensive track or object level annotations, in-

stead operating on cuboids. Low spatial precision of cuboid

annotations also seems to play a role in making the baseline

system robust to annotation errors, which in turn decreases

the cost of collecting annotations.

According to the authors of [13], two reasons why the

baseline system performs well are: 1) high recall and high

quantity of proposals based on object detections, and 2) pre-

dictions are based only on optical flow which acts as an

implicit background subtraction module, thus significantly

reducing the support of the input domain. Unfortunately,

these properties are precisely the reason why the system

is slow. Even with multiple code optimizations our imple-

mentation of the baseline method was more than six times

slower than real-time. In order to retain or improve on the

high metric performance of the baseline system we opt to

keep all the fundamental components, and instead intro-

duce hyperparameters to improve system speed. We per-

form a tradeoff analysis between speed and metric perfor-

mance and use this analysis to choose reasonable values for

the hyperparameters. This results in a system which is able

to operate at real-time, while retaining the majority of the

baseline system’s performance.

The primary goal of this work is to implement a real-

time system for the ActEV19 SDL. The secondary goals

are to provide a detailed description of our system and to

document this as an example study on taking slow DCNN-
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based systems and augmenting them to achieve real-time

performance. Our systematic approach can be summarized

as:

1. Profile the system, identifying the slowest compo-

nents.

2. Introduce hyperparameters which can improve perfor-

mance. For example, downsampling the input, or re-

ducing the number of inputs to a component.

3. Perform a tradeoff analysis of the hyperparameters

with respect to speed and performance metric of

choice.

4. Choose hyperparameters based on this analysis which

achieve the desired speed with minimal degradation to

metric performance.

The remainder of the paper is organized as follows: Sec-

tion 2 describes related works. Section 3 introduces the

three datasets used for training and evaluation. Section 4

covers the method and implementation details of our sys-

tem. Section 5 defines the training loss and describes the

steps for training our system. Section 6 describes the exper-

iments for hyperparameter selection, the performance of our

system on validation, and ActEV SDL performance. Sec-

tion 7 consists of some concluding remarks and directions

for future work.

2. Related Works

The method proposed in this paper follows a proposal-

based approach for action detection. It is reasonable to

draw comparisons to the object detection research which

has found great success in many practical applications in

the last few years [26]. For example, the method we base

our work on [13] is similar to the R-CNN object detec-

tor [11]. The obvious difference is that instead of acting

on a 2D spatial domain, action detection operates in a 3D

spatio-temporal domain.

It may at first seem like object detection techniques could

be trivially extended to act on an additional dimension,

however this is not straightforward. The additional tem-

poral dimension significantly increases the complexity of

the input domain. In the case of DCNNs with 3D convolu-

tional layers this has been shown to increase the amount

of training samples [15]. Another point of contention is

that bounds on the temporal dimension either do not ex-

ist (streaming video) or are inconsistent (recorded video).

Combining these differences with the lack of high quality

spatio-temporal action datasets are some reasons why ex-

tending object detection methods to spatio-temporal action

detection requires special consideration.

Despite these difficulties, extending object detection

methods to action detection is still a common approach to

the problem [9, 10, 13, 17, 23, 25]. Most of these meth-

ods either do not produce activity instances, instead pro-

ducing frame level classification [10, 9], or use an alter-

native method to aggregate multiple activity segments into

instances [17, 23, 25]. An alternative approach which has

been proposed is to first perform frame-level classification

then use temporal linking to produce instances [3]. The

attractive feature of the baseline approach [13] is that it

directly produces detections of activity instances without

additional temporal linking. This is accomplished by uni-

formly sampling frames across arbitrarily sized proposals.

The proposals are produced via hierarchical clustering of

object detections.

3. Datasets

In this section we overview the three datasets used for

training, hyperparameter tuning, and evaluation. These

are the ActEV Sequestered Data, the Multiview Extended

Video with Activities (MEVA) [1], and the ActEV19 TRE-

VID data [2].

3.1. ActEV Sequestered Data

The final evaluation of our system is reported as de-

scribed by the ActEV Sequestered Data Leaderboard (SDL)

[4]. The challenge consists of reporting temporal detections

for 37 activities in untrimmed security videos. The videos

may be positioned either indoor or outdoor, and a subset

of the videos are infrared (IR) video. There are separate

leaderboards for electro-optical (EO) videos, i.e. standard

digital visible-light videos, and IR videos. The sequestered

data used for scoring are not made public, however, an un-

labeled dataset named MEVA is provided.

The submitted system is required to output each activ-

ity instance with an associated start/end frame and detec-

tion confidence. Scoring is performed using the metrics de-

scribed in Section 6.1.

3.2. MEVA

The MEVA dataset contains 2,225 approximately 5

minute videos from 25 EO cameras and 4 IR cameras. Each

of the IR cameras is paired with an EO camera positioned

in approximately the same location and orientation. The EO

videos have resolutions of either 1920x1080 or 1920x1072

and IR videos are 352x240. All videos are timestamped and

synchronized via GPS time and all but one camera has fixed

orientation. All cameras have a fixed frame-rate of 30 Hz.

The single non-fixed orientation camera is in patrol mode,

i.e. the camera points at one location for a fixed amount of

time, then quickly orients to a new location. Of the 29 cam-

eras, 18 are located outdoors and 11 are indoors, all of the

EO-IR camera pairs are outdoors.

The MEVA dataset was collected as a realistic represen-

tation of what would be seen by a multi-camera system
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Activity Count Avg. area % Avg. duration

(frames)

person enters through structure 3995 5.7% 129

person exits through structure 3543 5.4% 134

person opens facility door 2054 4.9% 134

vehicle turning left 1766 4.0% 148

Talking 1694 7.1% 682

vehicle turning right 1471 2.8% 167

vehicle stopping 992 4.2% 160

person picks up object 958 3.1% 55

vehicle starting 906 4.0% 152

person sitting down 883 2.2% 65

person opens vehicle door 738 2.2% 70

person sets down object 724 2.3% 50

person standing up 667 2.3% 58

person closes vehicle door 610 2.5% 64

person exits vehicle 470 2.9% 107

specialized texting phone 420 6.4% 767

person enters vehicle 411 3.3% 94

vehicle u turn 401 4.6% 330

person closes facility door 364 3.6% 85

hand interaction 349 2.5% 59

vehicle reversing 339 5.0% 277

object transfer 321 7.9% 47

Transport HeavyCarry 321 8.1% 259

specialized talking phone 264 7.4% 651

vehicle drops off person 238 5.1% 374

person person embrace 211 2.4% 81

Riding 170 7.5% 266

person purchasing 142 10.1% 356

vehicle picks up person 107 3.7% 329

person reading document 84 3.9% 1195

Unloading 77 2.0% 177

Open Trunk 75 2.4% 106

Closing Trunk 67 2.6% 95

person laptop interaction 35 2.0% 1011

person loads vehicle 31 3.5% 168

abandon package 5 4.6% 169

theft 1 6.5% 242

Per-class Average 700.1 4.3% 252

Table 1. Per-class counts, relative area, and number of frames of

annotated activity instances in MEVA dataset. There are a total

of 25, 904 annotated instances, of which 22, 992 are selected for

training and 2, 912 are selected for validation.

in day-to-day operation. It is not uncommon to find en-

tire videos with nothing occurring, and some activities are

exceptionally rare, most notably “Abandon Package” and

“Theft”. There is also overlap among some camera views,

although we don not consider the multiview action detec-

tion problem in this work.

Since MEVA is provided without annotations, a col-

laborative effort was undertaken among DIVA participants

to produce annotations for training and internal validation.

This effort, while ongoing, has produced annotations for a

large portion of MEVA. Details of the MEVA annotations

used for training the system described in this manuscript

can be found in Table 1. Inspecting these annotations in-

dicates that they are imperfect. This was noted from the

observation that after watching approximately 20 minutes

of video one is likely to notice at least one false positive

and one false negative.

3.2.1 MEVA Annotation Format

Each MEVA annotation contains, at minimum, a spatial

axis-aligned bounding box (AABB), start/end frame, and

activity label. We will henceforth refer to annotations in this

format as cuboid annotations. The AABB of each cuboid

annotation corresponds to the entire spatial span of an activ-

ity within a video, therefore it is possible that an annotation

encompasses the entire video frame. For example, if a per-

son rides a bicycle from the lower left corner of a frame

to the upper right corner, then the AABB for that “Riding”

activity corresponds to the entire frame. The start and end

frames are the frame when the bicycle or rider are first vis-

ible to first frame where both are no longer visible. For the

majority of activities the spatial bounds are more limited

than this, with the average activity instance covering only

4.8% of the frame area. Of the videos which are fully anno-

tated, at least one of the 37 activity classes is occurring in

only 24.1% of the frames.

3.3. ActEV19 TRECVID

The ActEV19 TRECVID dataset consists of eighteen ac-

tivity types, of which, eleven are target activities for the

ActEV SDL challenge. The dataset is provided in three

splits: train, validate, and eval, with annotations being pro-

vided only for the train and validation splits. The train

dataset contains 64 videos totaling 2 hours 28 minutes with

1,338 instances of the eighteen activity types, of which 609

correspond to the eleven leaderboard activities. The validate

dataset consists of 54 videos totaling 1 hour 52 minutes with

1,128 instances of the eighteen activity types, of which 468

correspond to the eleven leaderboard activities.

While this dataset is relatively small compared to

MEVA, we make use of it in two ways. First, since it is

small and contains high quality labels we utilize it to moti-

vate our hyperparameter tradeoff experiments in Section 6.

We also use the eleven activities which correspond to SDL

labels by merging the train and validate annotations with

the MEVA dataset annotations in order to train the system

submitted to the ActEV SDL for final evaluation.

3.3.1 ActEV19 TRECVID Annotation Format

The ActEV19 TRECVID dataset annotations provide ob-

ject level annotations for each activity instance, where each

annotation consists of a track of each object involved in an

activity, as well as a start and end time. These tracks are

converted to a cuboid format by using the union box of all

the track geometry.

4. Method

In this section we describe the details of the system as

it would be used during evaluation. The description of the

training step is deferred to Section 5. An overview of the

steps are:

1. Proposal Generation
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(a) Human/vehicle object detection performed on

each video.

(b) Hierarchical clustering applied to object detec-

tions in the spatio-temporal domain.

(c) Initial action proposal cuboids constructed

by taking the minimum spatio-temporal axis-

aligned bounding box containing each cluster’s

detection boxes.

(d) Action proposal cuboids produced by applying

“temporal jittering” to initial action proposal

cuboids.

2. Proposal Inference

(a) TV-L1 optical flow computed for each video.

(b) Optical flow sampled corresponding to each ac-

tion proposal cuboid.

(c) Optical flow samples sent through a deep con-

volutional network to predict an action label (in-

cluding “No Activity”) and temporal refinement

regression value.

(d) Predicted class labels assigned to each proposal.

Low confidence proposals discarded and tempo-

ral refinement prediction applied to remaining

action proposals.

(e) 3D non-maximum suppression applied to re-

maining proposals.

These are the same steps proposed in the design of the

baseline system [13]. Owing to space constraints, we only

discuss the differences between our system and the base-

line system, focusing on implementation details that have

significant impact on system speed. The reader may notice

that some sections have parameters in their titles. These are

the hyperparameters introduced to tune system speed. The

values for these parameters are explored in Section 6.

4.1. Proposal Generation

The first step is proposal generation which outputs what

we call action proposal cuboids. The cuboids are analo-

gous to proposals used in object detection algorithms like

R-CNN.

4.1.1 Object Detection (Tdet)

The first step in generating action proposal cuboids is ob-

ject detection. This is performed using a Mask-RCNN de-

tector [16] with a Feature Pyramid Network backbone [20]

trained on MSCOCO [21]. To improve speed we only per-

form object detection once every Tdet frames. Since all

target activities involve humans or vehicles we only keep

detections corresponding to “person”, “car”, “airplane”,

“bus”, “train”, “truck”, and “boat”.

Implementation We use a publicly available Py-

Torch [22] port of Detectron [12, 24] with the

e2e mask rcnn R-101FPN 2x.yaml configuration. Object

detection is performed in a separate process for each video

where up to two videos may be processed at a time on each

available GPU.

4.1.2 Hierarchical Clustering

The next step is to perform hierarchical clustering on the

object detections for each video as described in the baseline

method [13]. Each object detection is represented as a point

in 3D space (x, y, f) which corresponds the center of the

detection box in pixels and the frame number. To account

for the Tdet parameter, an additional noise term is added to

f so the input points to clustering are (x, y, f + X) where

X is a random integer between −⌊Tdet/2⌋ and ⌊Tdet/2⌋
inclusive. Alternatively, we could have scaled f by 1/Tdet,

however in preliminary experiments we found our method

produced slightly higher recall. If there are more than

44,000 detections in a five-minute video we randomly se-

lect 44,000 to keep clustering from taking too long. We

found that this had effectively no impact on overall action

proposal recall.

We have tried other, more sophisticated representations

for clustering such as using deep features or additional de-

tection attributes like object aspect ratio, area, and class la-

bel. We’ve also experimented with additional scaling and

feature selection of the representations. None of these pre-

liminary experiments produced proposals with better recall

than the simple (x, y, f) representation.

Implementation Hierarchical clustering was imple-

mented from scratch in Python 3 using numpy.

4.1.3 Temporal Jittering

The final action proposal cuboids are constructed by apply-

ing the temporal jittering algorithm described in the base-

line method [13]. No changes were made to this algorithm.

Implementation Temporal jittering was implemented

from scratch in Python 3 using numpy.

4.2. Proposal Inference

In this section we describe the steps involved in produc-

ing activity predictions from action proposal cuboids.

4.2.1 Optical Flow (Tflow, Aflow)

Optical flow is computed using the TV-L1 algorithm [28].

We introduce two parameters which affect computation

speed. First, we sub-sample the RGB frames with a sam-

pling period of Tflow. For example Tflow = 2 indicates
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sampling every other frame. Second, we down-sample each

RGB frame’s area by a factor of Aflow while maintaining

the aspect ratio. To account for small camera motion and

vibrations we also subtract the average flow from each sam-

pled cuboid.

Implementation We use the GPU accelerated TV-L1

optical flow algorithm from OpenCV 2.4 [6] in C++1. Op-

tical flow is computed in a separate process for each video

where up to two videos may be processed at a time on each

available GPU. We found that increasing the number of al-

lowed processes per GPU, while possible, resulted in a de-

crease in overall speed. Each component of optical flow is

scaled and translated to span [−0.5, 255.5], then rounded

and cast to uint8. Each component is then saved as a single

channel JPEG image. The translation and scaling param-

eters are stored so that the original flow can be converted

back to the proper range upon loading. Experiments with

lossless compression showed that the artifacts introduced by

JPEG compression and quantization had negligible impact

on the system’s performance while significantly decreasing

memory usage. Since the JPEG images are relatively small

we are able to store the compressed optical flow images di-

rectly into RAM via temporary file system (tmpfs) which

significantly improves save and load times.

4.2.2 Data Sampling (Nfr, Sfr, Ffr)

Before proposals can be classified, we need to sample the

optical flow corresponding to the cuboids bounds. On aver-

age there are about 25, 000 cuboid proposals per five-minute

clip in MEVA. For each action proposal cuboid we first ex-

tend the smallest spatial dimension to give a aspect ratio of

1, then pad the cuboid by five pixels on all sides to account

for object detection errors. We sample this square region

from Nfr optical flow frames uniformly sampled across the

span of the cuboid proposal. The region is then resized to

Sfr × Sfr pixels using bilinear interpolation. Since optical

flow is in units of pixels/frame we take extra care when re-

sizing and apply the same scaling factor to the optical flow

values.

When a cuboid spans less than Nfr frames then the same

frame may be sampled multiple times. When a crop is per-

formed that goes outside the bounds of the flow image we

pad with zeros. As an additional speedup we only sample

frames which are divisible by Ffr. The motivation for this

hyperparameters is due to specific implementation details.

Implementation One of the most important parts of the

system is the ability to sample optical flow quickly. A naı̈ve

approach would be to iterate through each action proposal

cuboid, sampling the Nfr corresponding frames, then ap-

plying cropping and resizing. Unfortunately, while simple

1OpticalFlowDual TVL1 GPU parameters: tau = 0.25, lambda = 0.1, theta = 0.3,

nscales = 5, warps = 5, epsilon = 0.005, iterations = 300, useInitialFlow = false

to implement, this approach is extremely slow since it must

decompress Nfr optical flow frames for each action pro-

posal cuboid. Due to the large number of proposals this

becomes a significant bottleneck of our system.

To solve this issue, we first collect all the crops for each

optical flow frame that will ever need to be taken. Next, we

iterate over each frame which has at least one crop associ-

ated, load the frame, then compute all the resized crops for

that image. The resulting crops are saved back to the tem-

porary file storage and indexed so they can be referred to

later by their original spatial dimensions. Since the crops

are much smaller than the original flow images this strat-

egy results in an order-of-magnitude speed-up during eval-

uation. this stage further since it results in the total number

of frames visited being reduced by a factor of Ffr.

Loading, cropping, and resizing was implemented in

Python 3 using the Pillow library. The operations are per-

formed using 32 parallel worker processes where each job

produces crops for a single optical flow image.

4.2.3 Network inference

The optical flow associated with each action proposal is

center-cropped spatially to sfr × sfr where

sfr := ⌈Sfr · 224/256⌋ (1)

and then sent through a TRI3D network as a

(2, Nfr, sfr, sfr) tensor. For C target classes, the

output of the network is a class prediction vector ŷ ∈ R
C+1

and two temporal refinement predictions v̂ ∈ R
2 where v̂0

and v̂1 are respectively the predicted start and end temporal

refinement values. Following the baseline approach we

produce only a single start and end temporal refinement

prediction. The final class prediction is taken to be2

ω̂ :=
(

argmaxi≥1ŷi
)

(2)

and the predicted final start and end frame are taken to be

(

f̂st, f̂end

)

:= t · v̂ + fa (3)

where fa is the center frame of the proposal and t is half the

temporal span of the proposal. The classification confidence

score is taken to be

p := softmax(ŷ)ω̂ :=
exp(ŷω̂)

∑C+1

i=0
exp(ŷi)

. (4)

Any proposals with p ≤ τp are rejected. For MEVA

and the ActEV SDL we choose τp = 0.07. For ActEV19

TRECVID we choose τp = 0.15 due to containing fewer

activity classes. The purpose of this threshold is to reject

2subscript indices are 0-based
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“No Activity” classes. Alternatively we could simply re-

ject when softmax(ŷ)0 is above some threshold or is maxi-

mal. In preliminary tests on validation data we had slightly

better performance when using our approach which also re-

jects contested activities. Since the final scoring metric de-

termines thresholds for various operating points we choose

not to reject other low confidence predictions.

Implementation The network is implemented in Py-

Torch and uses a large mini-batch size. The exact mini-

batch size depends on hyperparameters Nfr and Sfr. We

use PyTorch’s built in nn.DataLoader class with twelve

parallel workers which allows subsequent batches to be

staged while network inference is occurring.

4.2.4 Non-maximum suppression

A simple 3D non-maximum suppression is used to remove

overlapping proposals. This algorithm is the same as the

one described in the baseline method [13].

Implementation NMS was implemented from scratch in

Python 3 using numpy with vectorization. Our system po-

tentially produces many activity predictions prior to NMS.

Because of this, it is important that the algorithm is imple-

mented with some consideration for speed. We found that

a completely iterative approach using dictionary lookups at

each step resulted in significant system overhead, increasing

the overall system time by a factor of about 20%.

5. Training

Training the TRI3D network is similar to the method

described in the baseline method [13]. We use the same

thresholds for producing training proposals, taking care to

select for hard negatives which slightly overlap ground truth

annotations.

The loss function is

L := Lcls + λ[ω 6= 0]Lloc (5)

where classification loss Lcls is standard categorical cross-

entropy loss which is

Lcls(ŷ, ω) := − log (softmax(ŷ)ω) (6)

and localization loss uses smooth L1 which is

Lloc(v̂, v) :=
1

2

1
∑

i=0

smoothL1 (v̂i − vi) (7)

where

smoothL1(x) :=

{

0.5x2 if |x| < 1

|x| − 0.5 otherwise
(8)

and [ω 6= 0] is an indicator function which disables Lloc for

negative training examples.

In the preceding equations ω ∈ {0, ..., C} is the ground-

truth activity class, v ∈ R
2 is the ground-truth temporal

refinement target, and λ > 0 is a hyperparameter. For all

our experiments we use λ = 1. The temporal refinement

target v is computed the same as in the baseline method.

We use the same optical flow and data sampling approach

described in Sections 4.2.1 and 4.2.2 to represent training

proposals.

For network optimization we use I3D weights pretrained

on Kinetics-400 [7] except for the two fully-connected lay-

ers which are initialized using PyTorch defaults.

The training dataset is balanced so that positive activity

classes (ω ≥ 1) which appear less frequently than others

are repeated so that each class is present in equal numbers.

While iterating through the dataset, a “No Activity” sample

randomly replaces a positive sample with probability 0.05
for MEVA and and 0.1 for AcvEV19 TRECVID.

Data augmentation is applied in the form of random spa-

tial crops with edge lengths sfr and random horizontal flips

for all activities except “vehicle left turn”, “vehicle right

turn”, and “vehicle u-turn”.

The network is trained with the Adam optimizer [19]

with learning rate 5e−4, weight decay 5e−6, and

(β1, β2) = (0.9, 0.999). An effective mini-batch size of

400 is used by training in parallel across 10 GPUs. The loss

for a mini-batch is computed as the average of Eq. 5 evalu-

ated for each sample in the mini-batch. Training continues

until it is clear the network is overfitting. This is usually ap-

parent after less than 40,000 batches. Every 250 batches we

evaluate loss and per-class classification accuracy on a sub-

set of our validation set consisting of 5,000 labeled propos-

als, half of which correspond to valid activities and half hard

negatives. The system usually reaches its minimum valida-

tion loss between mini-batch 5,000 and 20,000. Multiple

attempts to investigate and resolve the overfitting observed

during training have not led to any concrete conclusions or

solutions.

6. Experiments & Results

In this section we described the experiments performed

on both the MEVA and ActEV19 TRECVID datasets.

We begin by reporting speed versus performance on the

TRECVID validation data and then follow up with results

on the MEVA validation and ActEV SDL leaderboard.

6.1. Metrics

A full description of the metrics used may be found in

the ActEV19 SDL and TRECVID evaluation plans [4, 5].

For ActEV19 TRECVID validation performance, we report

probability of miss with at rate-of-false-alarm of 0.15 (p-

miss @ 0.15 rfa). For the ActEV19 SDL and MEVA val-

idation results we report probability of miss with at time-

based-false-alarm of 0.04 (p-miss @ 0.04 tfa) as well as
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Figure 1. Profile of system speed for the baseline system [13] ver-

sus our system with fast hyperparameter choice on the ActEV19

TRECVID validation set. Test hardware used to profile these sys-

tems had 4x NVIDIA R© GeForce R© 1080 Ti GPUs, Intel R© Xeon R©

CPU E5-2683 v4 @ 2.10GHz, and 128GB RAM. This is a similar

hardware configuration to the target machine for the ActEV SDL

evaluation server. Units in this plot are relative performance with

respect to real-time where 1 corresponds to the total run-time of

all videos in the dataset. This figure shows that the slowest parts

of the system are Object Detection, Optical Flow, Data Sampling,

and Network Inference.
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Figure 2. Results of varying hyperparameters on the ActEV19

TRECVID validation set. Each curve represents the results of

varying a single hyperparameter with all others kept at the base-

line value. The numeric label at each point refers to the value of

the varied hyperparameter. Tradeoff is represented as time gained

versus p-miss @ 0.15rfa. Time gained is reported in units of “×

real-time” which refers to reduction in time as compared to the

baseline system in Figure 1. For example, time gained of 1 ×

real-time corresponds to an overall system performing at 5.6 ×

real-time.

the normalized area under the DET curve from 0 to 0.2 tfa

(AUDC).

6.2. Speedups

The first step in achieving our goal of real-time perfor-

mance on the ActEV SDL evaluation server is to profile the

baseline system. The top bar in the in Figure 1 shows the

measured relative time of each stage of the system. The re-

sults of profiling are the primary motivation for introducing

the hyperparameters described in the sub-section titles of

Section 4. These hyperparameters are as follows:

• Tdet(1): Object detection input frame sampling period.

• Tflow(1): Optical flow input frame sampling period.

• Aflow(1): Optical flow input area scale.

• Nfr(64): Number of frames sampled from each

cuboid and provided to the TRI3D DCNN.

• Sfr(256): Sampled flow edge scaling factor.

• Ffr(1): Frame number factor. When sampling optical

flow, round the frame number to nearest multiple of

Ffr.

The numbers in parenthesis are the baseline values which

correspond to parameters used by the baseline system.

These are equivalent to the system proposed in the origi-

nal work [13]. Each of the parameters profoundly impacts

on one or more of the slowest components of the system.

In order to determine how best to assign the parameters,

we vary one at a time, keeping the others at baseline val-

ues. We then measure how each parameter affects overall

speed and metric performance. The results of these experi-

ments were used to inform our decision on the hyperparam-

eter values chosen for training on MEVA and submission to

the ActEV SDL, which requires real-time performance as a

prerequisite for participation.

To ensure the metrics are not representing the results of

a domain shift between the training and validation data we

retrained the model for each experiment, using the same hy-

perparameters during training and validation. The results of

the experiments are shown in Figure 2 where each point on

the plot refers to a different configuration trained and eval-

uated on the ActEV19 TRECVID validation set.

We would like to point out that the results of this ex-

periment only provide an approximate upper bound on our

choice of hyperparameters. It is outside the scope of this

work to attempt to predict how well a particular combi-

nation will perform without running the experiment. That

said, the results make it clear that choosing, for example,

Sfr = 91 or Aflow = 0.25 would have a catastrophic im-

pact on p-miss performance. On the other hand p-miss is

stable for a wide range of Tdet values.

Another observation is that the hyperparameters are not

independent of each other with respect system speed or per-

formance. For example, if Tflow = 4 and Ffr = 2 then

optical flow only generates frames which are multiples of 4.

Therefore rounding to the nearest available multiple of 2 is

identical to sampling the nearest frame, so the system speed

and performance would be the same as if Ffr = 1 or 4.

Due to these complex interactions we use the results in

Figure 2 to inform our decision, however the final decision

is to some degree based on intuition. The final hyperpa-

rameter values are: Tdet = 30, Tflow = 4, Aflow = 0.75,

Nfr = 32, Sfr = 164, Ffr = 8.

With these values the overall system time decreased from

6.65 to 1.08 times real-time, a speedup factor of 6.15, and

p-miss @ 0.15 rfa increased from 0.630 to 0.718, an overall

increase of 13.8%. Since the evaluation server uses newer
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System AUDC p-miss@0.04 tfa Relative time

UMD (Ours) 0.476 0.545 0.725

UCF-P 0.604 0.642 0.293

Purdue 0.655 0.737 0.124

STARK 0.821 0.857 0.757

INF MEVA1 0.930 0.945 0.588

Table 2. Results of our system versus others on ActEV19 SDL for

EO task as of December 15 workshop submission deadline.

System AUDC p-miss@0.04 tfa Relative time

UCF-P 0.444 0.530 0.403

UMD (Ours) 0.476 0.545 0.725

Edge-Intelligence 0.628 0.755 0.939

Purdue 0.642 0.733 0.272

STARK 0.717 0.777 0.793

INF MEVA1 0.859 0.880 0.922

Table 3. Results on ActEV19 SDL for EO task as of the January

10 snapshot deadline.

System AUDC p-miss@0.04 tfa Relative time

UMD+UCF 0.416 0.494 1.154

UCF-P 0.438 0.524 0.438

UMD (Ours) 0.476 0.545 0.725

Edge-Intelligence 0.628 0.755 0.939

Purdue 0.642 0.733 0.272

INF MEVA1 0.680 0.780 0.928

STARK 0.717 0.777 0.717

Table 4. Results on ActEV19 SDL for EO task as of Feburary 1.

UMD+UCF is the result of late fusion of our system and UCF-P.

generation GPUs we (correctly) predicted the relative speed

for this choice of hyperparameters to surpass real-time dur-

ing independent evaluation.

6.3. MEVA & ActEV19 SDL

For submission to the ActEV19 SDL, we train our

system with the hyperparameter values presented in Sec-

tion 6.2. We construct the training data by merging the

MEVA training dataset described in Section 3 with the over-

lapping activity types from ActEV19 TRECVID training

and validation data. The performance on our internal val-

idation set had a p-miss @ 0.04 tfa of 0.563 and AUDC

of 0.492. The true test of our systems ability to generalize

comes from the results on the ActEV19 SDL which is per-

formed by an independent evaluator on sequestered data.

The results of ActEV19 SDL snapshots at different dates

are reported in Tables 2, 3, and 4. The final AUDC of our

system is 0.476 with a relative time of 0.725, which exceeds

the real-time requirement. The per-class AUDC scores are

provided in Figure 3. We believe that the performance of

our system on sequestered data is compelling evidence of

the utility and generalizablility of our system. Our system

also has best AUDC on the IR portion of the ActEV SDL,

despite not being trained on any IR data. Further discussion

of the IR SDL results are omitted due to space constraints.
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Figure 3. Per-class performance for our submission to the

ActEV19 SDL [4] on EO task.

7. Conclusion

Our objective in this work was to make our baseline im-

plementation of Gleason et al. [13] real-time and be effec-

tive for a larger set of activities. We evaluated the baseline

system and realized that the same features that made the

baseline good were the features that made it slow. We de-

fined a set of parameters to accelerate the baseline approach

with limited loss of metric score. This was done across

datasets and activities: the parameters were evaluated on

the ActEV19 TRECVID and the final system was evaluated

on the ActEV19 SDL. The speed and metric performance

of our system has been confirmed extensively by third party

through sequestered evaluation for the ActEV19 SDL.

The careful measurements we have performed in this

work may enable future improvements in terms of speed of

untrimmed activity detection. Computing proposals that ob-

tain the same recall but have better precision would be very

important because the network inference time accounts for

half the total processing time. Therefore, obtaining the cur-

rent level of recall with significantly less proposals would

improve the overall system execution time. On the other

hand, upon a quick review of the baseline method the ob-

ject detection and flow computation may appear like oner-

ous steps. We have shown that in a well tuned implementa-

tion these account for only a small fraction of the execution

time.

Rare and surprise activities such as abandon package and

theft for which we do not have many samples will also be

part of our future focus.
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