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Abstract

The amount of available surveillance video data is in-

creasing rapidly and therefore makes manual inspection im-

practical. The goal of activity detection is to automatically

localize activities spatially and temporally in a large col-

lection of video data. In this work we will answer the ques-

tion to what extent context plays a role in spatio-temporal

activity detection in extended videos. Towards this end we

propose a hierarchical pipeline for activity detection which

spatially localizes objects first and subsequently generates

spatial-temporal action tubes. Additionally, a suitable met-

ric for performance evaluation is enhanced. Thus, we eval-

uate our system using the TRECVID 2019 ActEV challenge

dataset. We investigated the sensitivity by detecting activi-

ties multiple times with various spatial margins around the

performing actor. The results showed that our pipeline and

metric is suited for detecting activities in extended videos.

1. Introduction

The task of spatio-temporal activity detection is com-

prised of localizing activities temporally and spatially along

with classifying them. Problems hereby are the long time

horizon, a varying number of activities, multiple activities

simultaneously, arbitrary start and end points, intra- and

inter-class variance of the target activities and the computa-

tional costs for automatic detection. In the same way there

is need for quantitative evaluation, thus a metric for perfor-

mance evaluation should take the spatial and temporal in-

formation into account as well as it should be able to handle

long videos with only few activities.

The contributions of this work are: We extended the

ActEV 2019 activity detection metric by a spatial compo-

nent and performed an investigation on the influence of spa-

tial context in spatio-temporal activity detection using Con-

volutional Neural Networks (CNNs). Furthermore, we de-

veloped an entire computer vision pipeline and a visualiza-

tion tool for dataset and intermediate results analysis.
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Figure 1. Various spatial contexts relative to the detected object

bounding box with a fixed aspect ratio in consecutive frames which

form the basis for subsequent temporal activity detection.

2. Related Work

Temporal activity detection. The task of temporal activ-

ity detection is comprised of localizing activities temporally

along with classifying them. Montes et al. [14] and Buch

et al. [3] utilize C3D Networks [18] to generate spatio-

temporal features and recurrent neural networks for aggre-

gating said features over longer periods.

A common approach is to generate temporal activity de-

tections in the first place using sliding multi-scale anchors

and classify them subsequently [4, 16, 17, 21, 22]. Shou

et al. [17] propose a solution using three distinct CNNs:

Proposal, Classification and Localization. Several works

[4, 21, 22] follow the concept and structure of Faster R-

CNNs [15] and adapt these to temporal activity detection.

Xu et al. [22] extend their previous work [21] by integrat-

ing an optical flow stream. Chao et al. [4] consider multiple

receptive fields to cope with the large variation in activity

lengths.

Another concept for solving the temporal activity detec-

tion problem is the exploitation of dependencies in-between

particular activity proposals by modelling proposals and re-

lations as graphs using graph convolution [25].

Spatio-temporal activity detection. The spatio-temporal

activity detection task requires to find both, spatial and tem-
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poral boundaries for all occurrences of pre-specified tar-

get activities. One kind of approaches reduces the problem

complexity by solving the spatial localization problem first

before temporally localizing activities [6, 19, 1, 23, 24, 7].

In early work [6, 19], hand-crafted methods detect frame-

wise Regions of Interest (RoI). More recent approaches

[1, 23, 24, 7] employ object detection algorithms such as

Faster R-CNN [15] to find RoIs. The frame-wise RoIs are

combined to tracks over time using different temporal link-

ing methods. Lastly, these approaches employ temporal ac-

tivity detection methods to determine the temporal bound-

aries within the tracks. Another approach to spatial-first

detection was presented by Hou et al. [10]. The authors

generate small 3D cuboidal proposals with a fixed size and

temporally link them to form longer activity detections.

Opposed to spatial-first detection, Zolfaghari et al. [26]

propose a multi modal activity detection approach which lo-

cates activities first temporally before determining the spa-

tial boundaries. The work of Kalogeiton et al. [11] attempts

to localize activities both spatially and temporally at once

by using 3D anchor cuboids.

3. Proposed Architecture

We propose a hierarchical approach to spatio-temporal

activity detection consisting of multiple, consecutive mod-

ules. By extracting 3D space-time volumes from the origi-

nal video, we solve the spatial problem first before tempo-

rally localizing activities within said cutouts. We refer to

these cutouts as action tubes.

Figure 2 illustrates the pipeline. Our approach consists

of five consecutive modules: (1) Object Detection localizes

and classifies objects in all video frames individually. (2)

Object Tracking connects the frame-wise detections belong-

ing to the same object in order to form object tracks. (3)

Action Tube Generation refurbishes object tracks to cope

with detection and tracking errors. (4) Activity Detection

temporally localizes target activities within the action tubes

following the general approach of SS-TAD [3]. (5) Post-

Processing counters the design-related result fragmentation.

3.1. Object Detection

The object detection module takes a sequence of RGB

frames V = {fi ∈ [0, 1]3×w×h}N with a total length of N

frames and a resolution of w × h. The task of this module

is to detect objects in each frame fi individually, hence it

is supposed to generate a set of detections per frame Di =
{dij} with dij = (bij , lij , cij) with a bounding box bij =
(xij , yij , wij , hij), a class label lij and a class confidence

cij per detection.

For this task, we employ Faster R-CNN with Feature

Pyramid Networks [13] with a ResNet-50 backbone [9] us-

ing pre-trained weights. For activity detection, we are only

interested in activity performing actors such as persons and

vehicles. Therefore, we discard all non-actor object detec-

tions. Furthermore, we drop all detections with a class con-

fidence cij < θmin ∈ [0, 1] to minimize the false detection

rate. By default, θmin is 0.6.

3.2. Object Tracking

Given the object detections for the frames f1 to fi as

D = {D1, ..., Di}, the object tracking module temporally

links associated objects together to object tracks and assigns

a unique identifier per track. An object track is denoted by

Tk = (dt1∗, ..., dtm∗, uk) with t1 < t2 < ... < tm and

the unique identifier uk ∈ N. Note, that a track might miss

some detections in-between t1 and tm.

DeepSORT [20] is a fast method for multi-object

tracking-by-detection based on motion information using a

Kalman-Filter and appearance information using deep em-

beddings. We deployed this algorithm in our pipeline due to

its efficient and reliable tracking even with short term occlu-

sions. This tracking algorithm is notably fast, thus capable

of tracking object detections in real-time.

3.3. Action Tube Generation

We obtain a set of tracks T = {T1, ..., Tn} from the

object tracking module along with the original video file

V and transform these to action tubes. An action tube is

a spatio-temporal video excerpt which potentially contains

zero, one or multiple activities in any given interval. Ideally,

there are no overlapping activities in a single action tube,

neither temporal nor spatial. The spatial extent of an action

tube is supposed to be of similar size than a contained activ-

ity. We define action tubes as in Equation 1. The k-th action

tube Ak consists of s consecutive RGB frame excerpts, each

scaled to p× p pixels. By default, p is 224 pixels.

Ak = (e1, ..., es, uk)

with ei ∈ [0, 1]3×p×p ⊆ fj ∀i ∈ {1, .., s}, uk ∈ N
(1)

For the transformation, we apply a series of processing

steps: gap interpolation, temporal and spatial expansion,

smoothing, aspect ratio enforcement and image padding.

Gap Interpolation. We interpolate any gap inside the

tracks to fix detection or tracking errors through short oc-

clusions. For a given track Tk with a gap of length z we

linearly interpolate the closest available detection bounding

boxes bi and b(i+z+1).

Temporal Expansion. An object might be detected not un-

til a few frames after the emerge the object, especially if the

object moves in or leaves the scene. Therefore, the resulting

track potentially is too short in the temporal dimension. In

order to ensure, that activities are completely captured by

action tubes, we add a temporal margin of φ frames to each

track by linear extrapolation of the outer most two frames.
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Figure 2. Illustration of the proposed activity detection architecture. The pipeline consists of five consecutive modules: Object Detection,

Object Tracking, Action Tube Generation, Activity Detection and Post-Processing.

Spatial Expansion. In general, activities cover a slightly

larger area per frame than the size of the detected objects

since the interaction objects requires some extra space. In

order to increase the context information around detected

objects and to cover activities entirely, we extend all bound-

ing boxes in all tracks by a spatial margin of ω percent with

respect to the largest side length.

Smoothing. Since the object detections were generated

frame-by-frame, consecutive bounding boxes within a track

might differ abruptly in position, size and aspect ratio. In

contrast, activities have a smooth bounding box transition

from frame to frame. In order to fix the discontinuous

shape, we apply a linear filter for interpolation between con-

secutive frames with a smoothing factor γ.

Aspect Ratio Enforcement. For the subsequent processing

modules an action tube is required to have a fixed spatial

extend of p× p pixels per frame excerpt ei. To preserve the

aspect ratio of each bounding box, we extend each bounding

box individually by increasing the smaller edge length.

Image Padding. On account of the track modifications de-

scribed in the previous sections, the bounding boxes can

stretch out over the image borders. In those cases, we pad

the original image by replicating the outer most pixel bor-

der until all bounding boxes are entirely contained by the

extended image. Thereafter, the image extracts ei are gen-

erated by cutting out bi from the extended image and scaled

to p× p pixels using bicubic interpolation.

Finally, the action tubes Ak = (e1, ..., es, uk) are con-

structed using the identifier uk supplied by the original

track, see Figure 3.

3.4. Activity Detection

The activity detection takes in a set of action tubes

A = {A1, ..., Ar} and temporally localizes activities within

those. An activity detection comprises of the start and end

frame number fs, fe, the activity label l and the predic-
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Figure 3. Visualization of exemplary action tubes (yellow and

blue). Each tube consists of a sequence of consecutive rectangular

frame excerpts with varying position, size and aspect ratio.

tion confidence c. We follow the general approach of Sin-

gle Stream Temporal Activity Detection [3]. The tempo-

ral activity detection consists of three submodules (see Fig-

ure 4): (1) Feature Extraction derives spatio-temporal fea-

tures from short clips (2) Temporal Encoding accumulates

said features over longer periods (3) Detector Head finally

detects activities.

3.4.1 Feature Extraction

Given an action tube Ak = (e1, ..., es, uk), the feature ex-

traction module subdivides the action tube into short clips

of d frames. By default, d is 16. For an action tube with

length s, the number of clips n ∈ N is
⌊

s
d

⌋

, see Figure 5.

After clip generation an action tube consists of a list of clips

as in Equation 2:

Ak = (z1, ..., zn, uk) with zi ∈ [0, 1]d×p×p×3 (2)

For upstream temporal encoding, we reduce the di-

mensionality of each clip zi by mapping them to low-

dimensional spatio-temporal features using a pretrained 3D
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Figure 5. Subdivided action tube in clips of length d. The tube was

subdivided into n clips of length d frames. All frames within the

clips are scaled to p× p pixels.

Resnet-34 network [8]. Optimally, these spatio-temporal

features encode information about objects and their move-

ments within the d frames long and p × p wide clip. We

feed each clip zi individually in the pre-trained Resnet-34

and perform a forward inference on them. Through read-

ing the output of the penultimate layer, we obtain 512-

dimensional features. After the clip transformation the ac-

tion tubes A = {A1, ..., Ar} can be represented as in Equa-

tion 3:

Ak = (q1, ..., qn, uk) with qi ∈ R
512 (3)

3.4.2 Temporal Encoding

Based on the encoded action tubes from the previous pro-

cessing step Ak = (q1, ..., qn, uk), we employ stacked

Gated Recurrent Units (GRUs, [5]) in order to accumu-

late relevant information regarding object appearances and

movements over a longer period, see Figure 6. We feed

in the sequence of clip encodings q1 to qn and receive
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Figure 6. Stacked GRU architecture. The clip encodings generated

by the Resnet-34 are accumulated using multiple layers of gated

recurrent units.

a sequence of temporal-encodings r{1} to r{1,...,n} with

r{∗} ∈ R
1024. Note, that each feature vector r{∗} is depen-

dent to all previously fed encodings. Equation 4 expresses

the representation of an action tube after the temporal en-

coding module.

Âk = (r{1}, r{1,2}, r{1,2,3}, ..., r{1,..n}, uk)

with r{∗} ∈ R
1024

(4)

3.4.3 Detector Head

The detector head module takes in action tubes Âk as given

by the temporal encoding module and outputs activity de-

tections within the action tubes. Similar to [3], we define τ

anchors of varying length in order to localize activities tem-

porally through a single forward pass. An anchor ai with

i ∈ {1, ..., τ} spans a length of i · d frames for a clip length

of d frames. All anchors are aligned in such a manner, that

they end at the same frame. Figure 7 shows the alignment

(left side).

The detector head is a fully-connected neural network,

which infers the activity presence probabilities per anchor

and class. By applying the detector head to a given clip

position, the anchors correspond to a temporal span within

the action tube. The network takes a single feature r{∗} ∈
R

1024 provided by the temporal encoding module and out-

puts a matrix O ∈ [0, 1]τ×(c+1) for a total of c activities.

The matrix has c + 1 columns due to one additional back-

ground class, which allows the network to signal no activity

for the given temporal span. Each row in the output ma-

trix corresponds to one anchor as defined above. See Figure

7 for the correspondence. The output matrix O expresses

the activity presence probability per considered interval and

class due to a final softmax layer at the end of the detector

head network.

By applying argmax to each row, we obtain the most

likely class per interval M ∈ N
τ . Through applying row-

wise the max function, we receive the associated confidence
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Figure 7. Visualization of the detector head output. The output matrix (right side) encodes class probabilities for all activity classes plus

one additional background class. Each row in the output matrix corresponds to a predefined anchor, which defines a time segment relative

to the current head position. The predictions are generated with respect to this time segments.

score P ∈ [0, 1]τ to the most likely class. See Equations 5

and 6.

M = argmax
j∈{1,...,c+1}

oij (5)

P = max
j∈{1,...,c+1}

oij (6)

Since our goal is to detect all activity occurrences, we

can ignore all intervals in which the background class is

the most likely class. Additionally, we introduce a mini-

mum confidence threshold Θconf to ensure that detections

with low certainty are discarded. By default, Θconf is 0.5.

The temporal activity boundaries are trivially retrieved by

adding the corresponding anchor boundaries to the current

clip position. The spatial activity boundaries are retrieved

by the spatial extent of each action tube minus the applied

spatial padding.

Formally, we denote the detections generated by the sys-

tem as S = {S1, ..., Sh} with Si = (fsi, fei, li, ci, ui, Bi).
fsi, fei denote the start and end frame of the i-th detection,

li the class label, ci the presence confidence of the system,

ui the action tube identifier and the frame-wise object local-

izations Bi = {bij | j ∈ {fsi, ..., fei}}.

Detector Head Architecture. We constructed the detec-

tor head architecture as shown in Figure 8. The network is

relatively shallow with only three fully connected layers.

Ground Truth Mapping. The ground truth activities

are provided as a list of activities in global coordinates.

Since the training of the temporal encoding and the de-

tector head module is performed on action tube level, we

need to map the ground truth activities to the action tubes

A = {A1, ..., Ar}. This is achieved by intersecting all

clips zi ∀i with all ground truth activities and assigning the

ground truth class with the highest overlap to zi. If all in-

dimension: 1024
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Input = 
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Batch Normalization
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probability: 0.2
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Figure 8. Visualization of the detector head architecture. Three

fully connected layer in conjunction with the ELU activation func-

tion map the temporal encoding to the output matrix O containing

class probabilities.

tersection overlaps are below a certain threshold, the label

background is assigned.

3.4.4 Training

For joint training of the temporal encoding module and the

detector head we utilize a loss function similar to [17] and

[3]. This loss consists of two different loss terms: Ldetcls

penalizes wrong class predictions and Ldetloc penalizes mi-

nor temporal overlaps between ground truth and considered

138



interval. Equation 7 shows the combined loss function,

whereas λ controls the influence of the overlap loss. By

default, λ is 1.

L = Ldetcls + λ · Ldetloc (7)

The Ldetcls loss penalizes erroneous classification

through a weighted log loss (Equation 8). The weights wi

with i ∈ {1, ..., τ} counter the class-background imbal-

ance problem. Due to the sparsity of activity instances in

source videos, we reduce the influence of background clas-

sifications according to their relative frequency of occur-

rence within the entire dataset. The weight wi is set to 1 if

the ground truth of anchor ai is any non-background class.

Otherwise, wi is the ratio of class instances to background

instances for all sliding windows with given anchor length.

Ldetcls = −
1

τ

τ
∑

i

wi · log (Pi) (8)

The Ldetloc loss penalizes anchors with minor overlap to

ground truth instances. Equation 9 describes the loss com-

putation. vi refers to the normalized temporal intersection

over union between (tIoU) the i-th anchor and the associ-

ated ground truth activity gt(ai). The intersection with aτ
leads to an optimal tIoU value of 1. The operator ✶ denotes

the Iverson bracket and gt(ai) evaluates to the ground truth

class label for the i-th anchor.

Ldetloc =
1

2

τ
∑

i

(

o2ij

vαi
− 1

)

✶ [gt(ai) 6= backgr.]

vi = tIoU(intersection(gt(ai), aτ ), ai)

(9)

3.5. Post­Processing

By construction, our system generates heavily over-

lapping detections of variable length. To eliminate par-

tial detections, we compare the system instances S =
{S1, ..., Sh} pairwise and merge any two instances Si =
(fsi, fei, li, ci, ui, Bi) and Sj = (fsj , fej , lj , cj , uj , Bj) if

the following conditions are fulfilled:

Class congruence. Class types must be identical, therefore

li = lj .

Temporal proximity. Both detections must overlap tempo-

rally. The relative temporal overlap lij ∈ [0, 1] is defined as

in Equation 10. For merging, the relative temporal overlap

lij has to exceed a given threshold ΘminTIOU . By default,

ΘminTIOU is 0.1.

lij =
intersection([fsi, fei], [fsj , fej ])

min(fei − fsi, fej − fej)
(10)

Spatial proximity. Both detections must occur in the

same area regarding the spatial dimension. To ensure this

property, we enforce to both detections to be originated

from the same action tube. Thus, we require the condition

ui = uj .

If all three conditions are met, we merge Si and Sj and

obtain S′ from Equation 11.

S′ = (min(fsi, fsj), max(fei, fej), li,

max(ci, cj), ui, Bi)
(11)

4. Evaluation

We explore the context sensitivity of spatio-temporal ac-

tivity detection in extended videos using the TRECVID

2019 ActEV challenge dataset [2].

4.1. Metric Extension

Our evaluation metrics follow the evaluation metrics of

the ActEV 2019 challenge [2]. In contrast to their metric

for activity detection (AD), we additionally include spatial

information to create a meaningful metric to measure the

quality of a spatio-temporal activity detection system. This

allows us to evaluate not only temporally but also spatially

the results at activity level. The ActEV 2018 evaluation

metrics AOD and AODT include spatial detection informa-

tion as well, but these metrics depend on the localizations of

involved objects. However, our extended metric considers

localizations of activities as a whole.

4.1.1 Alignment between ground truth and detections

The evaluation metrics require a one-to-one alignment be-

tween system detections S = {S1, ..., Sh} and ground truth

references R = {R1, ..., Rg}. A system detection Si is ei-

ther a correct detection (CD) if there is a correspondence

Rj in the ground truth activities. Otherwise, Si is labeled a

false alarm (FA). Reference activities are labels either cor-

rect detection (CD) or missed detection (MD) depending on

the availability of a correspondence.

Two activity instances Si = (fsi, fei, li, ci, ui, Bi) ∈ S
and Rj = (fsj , fej , lj , uj , Bj) ∈ R need to fulfill the fol-

lowing criteria in order to be considered at all for an as-

sociation: class congruence, temporal overlap and spatial

overlap. For class congruence, class types must be identi-

cal, therefore li = lj . Sufficient temporal overlap is given

if the tIoU is greater than 0.5 (for system instances < 1 sec-

ond) and if the intersection is greater than one second (for

system instances ≥ 1 second).

The third criterion is the spatial overlap between both

instances by a threshold ǫ according to the average spatial

intersection over union (Equation 12). By default, ǫ is 0.01.

asIoU(Si, Rj) =
IoU(Bi[f ], Bj [f ])

∑

f 1

∀f ∈ intersection([fsi, fei], [fsj , fej ])

(12)
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To generate the mapping, we utilize the Hungarian al-

gorithm on the bipartite graph matching problem [12]. Ac-

tivity instances of both kinds are modeled as nodes within

a bipartite graph. All system nodes are connected with all

reference nodes which qualify as a possible correspondence

and vice versa. The edge weights between two nodes Si

and Rj are determined by the system activity presence con-

fidence ci.

4.1.2 Probability of missed detection

Based on the one-to-one alignment between system in-

stances S and references R, the metric probability of missed

detection Pmiss@Xrfa is defined as the fraction of missed

detection over the total number of ground truth instances at

a false alarm rate per minute of X (Equation 13).

Pmiss(class)@Xrfa =
#MDclass@Xrfa

#Rclass

∈ [0, 1]

Rclass = {Rj |Rj ∈ R ∧ lj = class}

(13)

The false alarm rate per minute X is defined in depen-

dency of a presence confidence threshold Θp. For a given

Θp, the scorer filters the system instances using this thresh-

old and computes an alignment based on the remaining in-

stances. The resulting number of false alarms is divided by

the total length of all videos in minutes. By variation of the

presence confidence threshold, we thus can calculate differ-

ent false alarm rate values. Using these values, we can cal-

culate the probability of missed detections at various false

alarm rates.

The mean probability of missed detections Mean-Pmiss

combines the Pmiss(class)@Xrfa of all activity classes by

averaging them.

4.1.3 Normalized Partial Area under DET Curve

The normalized, partial area under detection-error curve re-

duces the Pmiss(class)@Xrfa metric to a single score value

by integrating over the false alarm rate up to a maximal false

alarm rate. Equation 14 formalizes the nAUDC metric in

dependency of the maximal false alarm rate a and a given

activity class.

nAUDCa(class) =
1

a

∫ a

0

Pmiss(class)@xrfa dx (14)

The mean normalized, partial area under detection-

error curve metric combines the nAUDCa(class) for all

classes by averaging them. A perfect system reaches a

Mean-nAUDCa value of 0. If the system does not detect

any activity correctly below the false alarm rate threshold

a, the metric evaluates to 1.

4.2. Experiments

For our experiments, we joined the train and validation

splits of the TRECVID 2019 ActEV challenge evaluation

dataset [2] and utilized 5-fold cross validation for evalua-

tion. The conjoined dataset consists of 2466 activities in

total. Since the videos contain multiple activities per file,

we employ the grouped K-fold strategy to split the data on

activity level. We ran our experiments once per split and

average the evaluation results at the end.

In order to investigate the context sensitivity of spatio-

temporal activity detection, we measured the performance

of our system for various spatial margins specified in the

ActionTubeGeneration module. The change in spatial mar-

gin leads to broader action tubes, which incorporate more

context around the activity actor. We evaluate the system

for a margin of 0, 5, 10, 25, 50 and 100 percent. Figure

1 visualizes the effect of different margins on the resulting

action tubes.

4.2.1 Results

The results for this experiment are shown in Table 1. Since

we want to capture the influence of spatial context on the

activity detection quality, we consider the spatial margin of

0 as our baseline for comparison. This setting relates to

action tubes with no additional context. Thus, they contain

only the tracked object.

Spatial margin Mean-nAUDC0.2

0 0.889098

5 0.872223

10 0.859502

25 0.854712

50 1.000000

100 0.994454
Table 1. Results of the context sensitivity experiment. The best

activity detection results with a Mean-nAUDCa of 0.854712 were

achieved with a spatial margin of 25%.

The experiments with margins 5, 10 and 25% show

an improvement compared to the baseline. This improve-

ment indicates that the close proximity to the activity ac-

tor contains activity specific information, which helps our

system to locate and classify them. The margin of 25%

yields the best performance over all tested margins with a

Mean-nAUDC0.2 of 0.854712. Further experiments with

the margins 50 and 100% reveal the limitations of spatial

action tube padding. At some point in-between 25 and 50%

the advantage of a larger context does not outweigh the dis-

advantage of information loss through scaling. For large

margins, the object tracks are large with respect to their

spatial dimensions. In the Activity Generation module, we

scale the action tubes to a fixed spatial resolution of p × p
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Figure 9. Results of the context sensitivity experiment as an aver-

age of all activities for the spatial margins 0, 5, 10, 25, 50 and 100

%.

pixels. The loss in information through scaling may be the

reason for worse results with higher margins.

Figure 9 displays the same results as a function of

Mean-Pmiss in dependency of the false alarm rate for dif-

ferent spatial margins.

The Figures 10 and 11 demonstrate the dependency of

the context sensitivity from the activity type. The prior dis-

plays the activity Activity carrying, whereas the latter ex-

presses the activity Pull.

In the Activity carrying figure, the lower margins (0, 5,

10 and 25%) perform roughly similar with no clear best op-

tion. This circumstance indicates that for the activity Activ-

ity carrying additional context information has no or almost

no effect on the activity detection quality. This finding is not

surprising due to the fact, that carried objects in most cases

are kept close to the actor and therefore are already included

in the action tubes at a spatial margin of 0. The larger mar-

gins (50 and 100%) produce significantly worse results than

the smaller margins. This circumstance might be due to the

information loss as described above.

Figure 11 shows the probability of missed detection for

the activity Pull. The effect of adding context to action

tubes is substantial. The lower margins (0, 5, 10 and 25%)

show a significant performance improvement compared to

the baseline. The reason is possibly that the activity Pull in-

volves pulling an object, which in general is close to the ac-

tor, but not within the same bounding box around the actor.

Adding a margin incorporates the pulled object in the ac-

tion tube and therefore is included into the further pipeline.

Again, the larger margins (50 and 100%) produce worse re-

sults than the baseline.

Figure 10. Results of the context sensitivity experiment for the

activity Activity carrying for the spatial margins 0, 5, 10, 25, 50

and 100%.

Figure 11. Results of the context sensitivity experiment for the

activity Pull for the spatial margins 0, 5, 10, 25, 50 and 100%.

5. Conclusion

In this work we developed a hierarchical pipeline for ac-

tivity detection which spatially localizes objects first and

subsequently generates spatial-temporal action tubes. The

ActEV 2019 challenge metric was extended by a spatial

component and an investigation on the influence of spatial

context in spatio-temporal activity detection using CNNs

was performed. The results showed that spatial context is

class dependent and plays a significant role in detecting ac-

tivities in extended videos.
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