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Abstract

We propose an Efficient Activity Detection System, Argus,

for Extended Video Analysis in the surveillance scenario.

For the spatial-temporal event detection in the surveillance

video, we first generate video proposals by applying object

detection and tracking algorithm which shared the detection

features. After that, we extract several different features and

apply sequential activity classification with them. Finally,

we eliminate inaccurate events and fuse all the predictions

from different features. The proposed system wins Trecvid

Activities in Extended Video (ActEV1) challenge 2019. It

achieves the first place with 60.5 mean weighted Pmiss, out-

performing the second place system by 14.5 and the baseline

R-C3D by 29.0. In TRECVID 2019 Challenge2, the proposed

system wins the first place with pAUDC@0.2tfa 0.48407.

1. Introduction

In recent years, the volume of video data from widely-

deployed surveillance cameras has grown dramatically. How-

ever, camera network operators are overwhelmed with the

data to be monitored, and usually cannot afford to view or an-

alyze even a small fraction of their collections. For enabling

timely response for critical surveillance events,such as traf-

fic events [32, 31], there is thus strong incentive to develop

fully-automated methods to identify and localize activities in

extended video collections and provide the capability to alert

and triage emergent videos. These methods will alleviate the

current manual process of monitoring by human operators

and scale up with the growth of sensor proliferation in the

near future.

An efficient and effective functionality to spatially and

temporally detect or localize human activities is central in

∗equal contribution
1https://actev.nist.gov/prizechallenge
2https://actev.nist.gov/trecvid19

time

Figure 1. Activity detection in video surveillance scenarios.

surveillance video analysis. With the availability of large-

scale video surveillance dataset such as VIRAT [24], the Ac-

tivities in Extended Videos Prize Challenge (ActEV) seeks to

encourage the development of real-time robust automatic ac-

tivity detection algorithms in surveillance scenarios. Specif-

ically, an activity is defined to be “one or more people (or

vehicle) performing a specified movement or interacting

with an object or group of objects”. Figure 1 illustrates three

“talking phone” and “vehicle turning” activities. For spa-

tial object detection, as the common practice since Faster

R-CNN [26], region-based object detectors employ proposal

generation and classification networks. A few recent work

applied this two-stage architecture for temporal action local-

ization [8, 30, 19, 4], and demonstrated competitive perfor-

mance. In particular, R-C3D network [30] closely follows

the original Faster R-CNN but in the temporal domain. There

is VideoCapsuleNet [9] which use an end-to-end segmenta-

tion network for action detection. For efficiency, there are

also several previous works [25, 11, 17, 10, 15] focusing

on online action detection or fine-grained action detection

untrimmed videos. However,these methods may not general-

ize to a more challenging spatial-temporal activity detection

problem, which is the central scenario for surveillance video

analysis.

To tackle the challenging spatial-temporal activity detec-

tion problem, we apply a divide-and-conquer strategy built

on [5, 6]. We first generating a sparse set of class agnostic
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Figure 2. System architecture of Argus.

spatial-temporal proposals from the input video, followed by

classifying and temporal localizing the action categories for

each proposal. The proposal generation includes object de-

tection, tracking to generated spatial-temporal tubes covering

most activity priors for classification. Unlike prior spatial de-

tection [26] or temporal localization work [8, 30, 19, 3], we

incorporate domain knowledge to explicitly model human-

object interaction in both spatial and temporal domains. We

then employ sequential classifiers to temporally localize ac-

tivities in the proposals. Our system employs and improves

multiple recent methods in the sub-modules and achieves the

state-of-the-art results for activity detection in video surveil-

lance scenarios. We design a parallel framework to maximize

the computation efficiency for large-scale surveillance video

analysis. We term our spatial-temporal activity detection

system Argus. We have dockerized Argus to enable SOTA

surveillance video analysis with one script. In a nutshell, our

contribution is twofold:

1. We propose Argus, an effective and efficient system for

activity detection in extended Video analysis.

2. Argus yields SOTA results for spatial-temporal activity

detection in video surveillance scenarios. It is easy to

be applied to real-world large-scale surveillance event

detection applications and be upgraded with future de-

tection models.

2. The System

2.1. System Architecture

The overall system architecture is depicted in Fig. 2. We

employ a two-stage system for activity detection. In the first

stage we pre-process videos to generate event proposals to

spatially and temporally localize candidates of activities. In

the second stage, we extract features and perform temporal

classification and postprocess to generate the activity detec-

tion outputs. The system is designed to achieve high recall in

the first stage by increasing the proposal coverage whereas

in the second stage the classification model aims to improve

the precision. Argus is composed of three parts: (i) Activity

proposal generation (ii) Classification (iii) Postprocess.

For Activity proposal generation, object detection model

is first applied to detect person and vehicle objects. We then

create tracklets and generate spatial-temporal activity pro-

posals. To classify the activities in the proposals, we extract

features and perform temporal classification to temporally

localize activities. Additionally, a scene detection model is

applied to provide scene information as the side-information

for model switch. Lastly, results from multiple activity clas-

sifiers are filtered then being combined to generate the final

outputs. In the following section we first introduce our

pipeline implementation and elaborate individual module

design.

2.2. Parallel Video Analysis Framework

The dataset is processed as chunks of videos. For each

chunk, Argus operates parallel video analysis in the chunk.

2.2.1 Module Parallelization

Different modules require different amounts of CPU and

GPU resources. For example, the proposal generation mod-

ule (P) in Fig. 2 relies on the CPU resource, and the subse-

quent feature extraction module (F) mainly depends on the

GPU resource. Based on the above reason, we can parallelize

the P module and the F module. As shown in Fig. 3, we

can largely reduce the additional time cost CP brought by

module P. Note that the length of time for extracting features

by F is much longer than that for generating proposals of a

video by P. Thus, the CP approximately equals to the cost

of processing only one video by P, which means that the F

module doesn’t need to wait for generating proposals except

for those of the first video. Notably, CP will not increase as

the number of videos increases.

2.2.2 Pipeline Parallelization

Our system is a GPU-wise parallel computation system. In

the experiments, we find that it is hard to predict and allocate

the resource before we analysis the videos. For example,

a short but dense video (i.e., a video with many proposals

of events in a short time) may cost more than a long but

sparse video. Therefore, we develop a GPU management

subsystem to dynamically allocate GPU for pipelines. In

this system, the GPU management system will monitor the

GPU usage and dynamically create a new pipeline when an
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old one is finished. Please refer to Table 1 for details of

implementations of our system.

Name Model Framework GPU

Object Detection CNN TensorFlow Yes

Tracking D-SORT TensorFlow Yes

Proposal Generation original Python No

Feature Extraction CNN Pytorch Yes

Activity Classification RNN TensorFlow Yes

Filtering original Python No

Fusion original Python No
Table 1. Implementation Detail. The model marked with ’original’

is original implemented in this system.

Figure 3. Parallelization between the Proposal Generation (P) mod-

ule and the Feature Extraction (P) module. The v1, v2, and v3

denote different videos. For each video, the F module needs the

proposals generated by the P module.

3. The Modules

3.1. Event Proposal Generation

The events of concern in ActEV are summarized in Table

3. These events involve either person or vehicle object, we

use this prior knowledge to build the event proposal module

starting from the object detection step. The output of this

step is person and vehicle bounding box for each frame. The

immediate natural next step is to associate detected object

across frames, which is tracking. The output of this step is

person tracklet and vehicle tracklet. Finally, we derive event

proposal by designing heuristics on the tracklets. The output

of this step is event proposal.

3.1.1 Object Detection

We utilize faster RCNN [26] with feature pyramid net-

work [20] on ResNet-101 [12] as the backbone for object

detection, in which RoIAlign is used to extract features for

Region-of-Interest. We apply object detection on every k

frame from the videos. Full resolution images are input

to the model and we fine-tune our model using the full 15

object class annotation in the the VIRAT dataset.

3.1.2 Tracking

We compare the performance of deep SORT [29] and kernel-

ized correlation filter (KCF) [13]. As shown in Table 2, deep

SORT outperforms KCF for all the metrics except precision.

As the tracking module is used to generate tracklets which

are proposal candidates, we expect a high recall and low

ID switches with a comparable precision. The results are

reported in Table 2. In experiments, we also tried to using

vehicle/person re-identification methods [23, 22, 21, 18] to

future improve the quality of the tracklets. Re-id methods

are applied to detect and merge the tracklets or the same per-

son/vehicle. In the final system, we utilize deep SORT [29]

to generate tracklets by associating detected objects across

frames. We follow a similar track handling and Kalman fil-

tering framework [29]. We use bounding box center position

(u, v), aspect ratio γ, height h and their respective velocities

in image coordinates as Kalman states. We compute the

Mahalanobis distance between predicted Kalman states and

newly arrived measurement to incorporate motion informa-

tion. For each bounding box detection, we use the feature

obtained from object detection module as a appearance de-

scriptor. We compute the cosine distance between tracks

and detections in appearance space. To build the association

problem, we combine both metrics using a weighted sum.

An association is defined admissible if it is within the gating

region of both metrics.

3.1.3 Spatial-Temporal Proposal Generation

After obtaining the single object trajectories for person and

vehicle respectively in videos, we generate event proposal.

The event proposal can be treated as a sequence of bounding

boxes corpped from each frame. We divide the events into

three categories, namely: person only proposal, vehicle only

proposal and person-vehicle interaction proposal. The cate-

gorization for the events on the VIRAT dataset is illustrated

in Table 3. 1) The person and vehicle only proposals contains

only events happened on a single object (i.e., either a person

or a vehicle). 2) To generate proposals of person-vehicle

interaction, we associate individual person and vehicle to

model their interactions. We use a spatial-temporal regu-

larization schema to obtain the interaction proposals. An

intuitive illustration is shown in Figure 4 for event “person

entering vehicle”. Let the blue curve be the person trajectory

and the red curve be the vehicle trajectory. The x-axis is the

time dimension and the y-axis is the spatial dimension. In

the black dashed line region, the spatial distance between

person and vehicle trajectories are consistently close enough

in space within the temporal window [x1, x2]. Finally, we

use this regularization to generate event proposals from two

object trajectories.

3.2. Spatial­Temporal Classification

3.2.1 Feature Extraction

We learn proposal-augmented I3D-Flow and I3D-RGB fea-

tures by fine-tuning I3D [1] models for activity recognition
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Models Recall (%) Precision (%) ID switches MOTA (%) MOTAL (%)

KCF 93.5 97.1 2519 91.3 90.5

deep SORT 95.2 96.5 909 91.7 91.8
Table 2. Results of two multi-object tracking algorithms in the validation set of VIRAT

Type Events/Activities

Person

only

Transport_HeavyCarry, Riding, Talking, Ac-

tivity_carrying, Specialized_talking_phone,

Specialized_texting_phone, Entering, Exiting,

Closing, Opening

Vehicle

only

Vehicle_turning_left, Vehicle_turning_right,

Vehicle_u_turn

Interaction Open_Trunk, Loading, Closing_trunk, Un-

loading
Table 3. The events categorization according to proposal types on

the VIRAT dataset.

person trajectory

vehicle trajectory

spatial  

y

temporal 

x

Δ𝑦 < 𝜃
𝑥1 𝑥2

spatial-temporal 

regularization

Figure 4. Illustration of the spatial-temporal regularization to obtain

interaction proposals based on person and vehicle trajectories.

on VIRAT. The base models are pre-trained on ImageNet,

Kinetics-600 [16], and Charades [27]. Recently, there are

also latest works aim to learn the stream of action in or-

der to replace the optical flow model [28, 7] but we use

I3D-FLOW and I3D-RGB to learn the representative fea-

tures. We fine-tune on the VIRAT dataset with the annotated

positive event proposals and 5-times non-trivial background

proposal as the negatives. We extract raw RGB and two types

of raw optical flow frames (TVL1 and Farneback) from the

spatial-temporal proposals for fine-tuning. The proposals

are augmented by randomly scaling proposal in the tempo-

ral and spatial domain. After fine-tuning, we use the last

convolutional layer as the feature for classification.

3.2.2 Activity Classification

We utilize a bi-directional LSTM [14] to perform tempo-

ral(sequential) classification to localize activities within

spatial-temporal proposals. The spatial-temporal proposal

generation in Sec 3.1.3 aims to cover most of the possible

proposals (high recall) while the bi-LSTM classifier aims to

achieve high precision. For training we temporally extend

the proposals of positive events to supervise the classifica-

tion model to capture the activity boundaries. Different from

BSN [19], our model predict activities and locate activities

boundaries simultaneously.

3.2.3 Scene Detection

To determine the scene (parking area, crossroads, etc) of a

video, we apply a ResNet-101 [12] for classification. The

frames of the first 20 seconds are extracted, predicted, and

then averaged to determine the scene for classifier selection.

To achieve the best performance on both accuracy and speed,

the scene detection model use a isolate network and it did

not share the feature with the action detection model.

3.3. Postprocess

3.3.1 Proposal Filtering

After classification and localization, the candidate proposals

may have large spatial and temporal overlap. Thus we adopt

spatial-temporal non-maximum suppression (NMS) to avoid

redundant candidates. Empirically we find that the optimal

IoU threshold set for suppression in NMS is high, which

implies that our framework can generate less redundant pro-

posals.

3.3.2 Fusion

To obtain the best performance, we apply late fusion in

the postprocess stage. We take the prediction scores from

individual proposals and heuristic average them if there

intersection-over-union (IoU) is greater than a threshold.

We repeat this process iteratively until the predictions con-

verge. We fuse the models with a I3D-RGB model, and two

types of I3D-Flow models.

4. Experiments

4.1. Experimental Setup

We conduct experiments on a subset of the widely used

VIRAT [24] dataset which is of concern in the ActEV chal-

lenge. This subset consists of 18 event types distributed

throughout 29 hours of videos. The videos are recorded us-

ing multiple models of HD video cameras at 1080p or 720p

and the frame rates range between 25 and 30 Hz. The station-

ing cameras are mostly at the top of buildings and the view

angles of cameras towards dominate ground planes range

between 20 and 50 degree. The detailed events of concern

can be found in Table 3. For our expeiments, all the models

in the system are trained with official annotation provided

for VIRAT dataset unless some of them are claimed to be

fine-tuned on VIRAT with public pre-trained models.
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mAP

I3D-RGB 66.06 35.26 17.26 23.14 12.54 16.28 40.48 28.95 15.11 48.29 60.99 33.46 55.47 48.33 52.14 23.35 1.29 0.28 32.15

I3D-FlowFB 63.64 38.33 38.57 48.03 22.40 51.66 40.99 14.98 15.11 57.73 68.44 35.49 64.55 65.05 41.26 19.25 1.33 0.18 38.16

I3D-FlowTVL1 58.38 45.18 46.50 57.91 21.01 51.75 47.02 21.37 27.45 55.99 70.65 29.40 58.41 79.94 45.63 23.68 2.44 0.36 41.28

Fusion 82.24 69.97 51.82 69.24 35.58 64.10 66.51 25.26 43.99 66.74 78.47 37.36 74.18 80.76 63.73 27.20 1.60 0.37 52.17

Table 4. Activity recognition results on the VIRAT testing set. (Higher is better)

time

Figure 5. System output visualization.

For activity recognition, we use mean average precision

(mAP) as the metric (higher is better). We use the spatial-

temporal proposals defined in the VIRAT for evaluation. For

activity detection, we use the Pmiss@ metric (lower is better)

defined in the ActEV challenge 3. The system performance is

evaluated using Pmiss(τ) and RateFA(τ) which are defined

as

Pmiss(τ) =
8 +NMD(τ)

10 +NTrue_Instance

, (1)

3https://actev.nist.gov/

and

RateFA(τ) =
NFA(τ)

Video_Duration_In_Minutes
. (2)

Here, τ is the activity presence confidence score threshold,

Pmiss(τ) is the probability of missed detections at τ and

RateFA(τ) is the rate of false alarms at τ . NMD(τ) is the

number of missed detections at τ , NFA(τ) is the number of

false alarms at τ , and NTrueInstance is the number of the

true instances in the sequence. For ActEV-PC evaluations,

the system performance will be evaluated using Pmiss at

RateFA = 0.15 for activities.
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The implementation details is listed in Table 1. We use

the data and the annotations defined in the standard training

split in VIRAT to train or fine-tuning individual modules.

The best model in the validation split is used for model se-

lection. We report the activity recognition (spatial-temporal

proposals are given) and activity detection (spatial-temporal

proposals are generated by Argus) on the testing split.

Experiments mean-Pmiss@0.15rfa (%)

RC3D [30] 91.30

Team SRI 80.46

Team IBM and MIT 75.65

Team UMD 75.03

Team UCF 75.00

Argus (RGB) 79.25

Argus (I3D-FlowTVL1) 71.52

Argus (Fusion) 60.47
Table 5. Activity detection results in Trecvid Activities in Extended

Video (ActEV) Challenge 2019 (Lower is better). The best result is

marked in bold.

Experiments Partial AUDC@0.2fta

NIST-TEST 0.85649

NTT-CQUPT 0.60058

Hitachi 0.59889

BUPT-MCPRL 0.52408

team-arnet 0.49099

Argus (RGB) 0.49595

Argus (I3D-FlowTVL1) 0.48615

Argus (Fusion) 0.48407
Table 6. Activity detection results on the VIRAT testing set on

TRECVID 2019 (Lower is better). The best result is marked in

bold.

4.2. Activity Classification Results

Table 4 summarizes the result of activity recognition on

VIRAT. As can be seen, the augmented optical flow I3D

models greatly outperform the RGB model in 13/18 events

for TVL1 and Farneback. Events with smaller spatial pro-

posals such as activities involving cell phones are harder to

be recognized. Complex activities, which includes reason-

ing over multiple objects (i.e., “loading”, “transport heavy

carry”) and longer temporal (i.e., “Vehicle u-trun”) are also

challenging. With a cost of roughly 13x computation time,

optical flow with TVL1 algorithm yields better performance

over Farneback. The reason behind is that the I3D model

weights are pre-trained TVL1 flow on Kinetics and Charades.

The late fusion of the three models delivers the best activity

recognition performance.

4.3. Activity Detection Results

For the challenge, we prepare our system on a four GPU

( NVIDIA 1080Ti) cards machine with 128G memory and

one 32-core CPU. The running time is 39,688 seconds on

246 test videos with the total duration around 6,731 seconds.

In Table 5 we show the results on mean-Pmiss@0.15rfa

in Trecvid Activities in Extended Video (ActEV) challenge

2019 4). In the challenge, the proposed system achieves the

first place with 60.5 mean weighted Pmiss, outperforming

the second place system by 14.5 and the baseline R-C3D by

29.0.

Table 6 presents the comparisons Partial AUDC@0.2tfa 5

results of activity detection on VIRAT test dataset (reported

on the official leaderboard on TRECVID 2019 Challenge
6). As can been seen, Argus outperforms other teams by

a large margin. We observed that the fusion of RGB and

Flow_TVL1 feature reports the best result of 0.48407 in

Partial AUDC@0.2tfa .

5. Conclusion

We propose an Efficient Activities Detection System for

Extended Video Analysis in surveillance event detection. On

the system level, the proposed system utilize both modular

and pipeline level parallel computing strategies to optimize

usage of GPU and video processing in order to perform

efficient inference procedure. On the algorithm level, the

proposed system is easy to implemented with state-of-the-art

models and algorithm. We conducted thorough experiments

on the VIRAT dataset and wins Trecvid Activities inEx-

tended Video (ActEV) challenge 2019 and TRECVID 2019

Challenge. For future work, the proposed system can be eas-

ily adapted to other real-world applications in video analysis

area.

6. Acknowledgment

This work was supported in part by the Intelligence Ad-

vanced Research Projects Activity (IARPA) via Department

of Interior/Interior Business Center (DOI/IBC) contract num-

ber D17PC00340. The U.S. Government is authorized to

reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright annotation/herein.Disclaimer:

The views and conclusions contained herein are those of the

authors and should not be interpreted as necessarily repre-

senting the official policies or endorsements,either expressed

or implied, of IARPA, DOI/IBC, or the U.S.Government.

4https://actev.nist.gov/prizechallenge. Our Team is named as MUDSML,

snapshot taken on March, 2019
5Partial AUDC is the area under the DET curve between a Time-based

False Alarm rate of 0 and 0.2. Value of a perfect system is 0.
6https://actev.nist.gov/trecvid19, Our Team [2] is named as MUDSML,

snapshot taken on Oct 1st, 2019

6131



References

[1] J. Carreira and A. Zisserman. Quo vadis, action recognition?

a new model and the kinetics dataset. In proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 6299–6308, 2017.

[2] X. Chang, W. Liu, P.-Y. Huang, C. Li, F. Zhu, M. Han, M. Li,

M. Ma, S. Hu, G. Kang, et al. Mmvg-inf-etrol@ trecvid 2019:

Activities in extended video.

[3] X. Chang, Z. Ma, M. Lin, Y. Yang, and A. G. Hauptmann.

Feature interaction augmented sparse learning for fast kinect

motion detection. IEEE Trans. Image Processing, 26(8):3911–

3920, 2017.

[4] X. Chang, Y. Yu, Y. Yang, and E. P. Xing. Semantic pooling

for complex event analysis in untrimmed videos. IEEE Trans.

Pattern Anal. Mach. Intell., 39(8):1617–1632, 2017.

[5] J. Chen, P.-Y. Huang, J. Liu, J. Liang, T.-Y. Hu, W. Ke, W. Bar-

rios, Vaibhav, X. Chang, H. Dong, A. Hauptmann, S. Chen,

and Q. Jin. Informedia @ trecvid 2018: Ad-hoc video search,

video to text description, activities in extended video. In

Proceedings of TRECVID 2018. NIST, USA, 2018.

[6] J. Chen, J. Liu, J. Liang, T. Hu, W. Ke, W. Barrios, D. Huang,

and A. G. Hauptmann. Minding the gaps in a video action

analysis pipeline. In 2019 IEEE Winter Applications of Com-

puter Vision Workshops (WACVW), pages 41–46, Jan 2019.

[7] N. Crasto, P. Weinzaepfel, K. Alahari, and C. Schmid. Mars:

Motion-augmented rgb stream for action recognition. In

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 7882–7891, 2019.

[8] X. Dai, B. Singh, G. Zhang, L. S. Davis, and Y. Qiu Chen.

Temporal context network for activity localization in videos.

In Proceedings of the IEEE International Conference on Com-

puter Vision, pages 5793–5802, 2017.

[9] K. Duarte, Y. Rawat, and M. Shah. Videocapsulenet: A

simplified network for action detection. In Advances in Neural

Information Processing Systems, pages 7610–7619, 2018.

[10] G. Gkioxari and J. Malik. Finding action tubes. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 759–768, 2015.

[11] J. Gleason, R. Ranjan, S. Schwarcz, C. Castillo, J.-C. Chen,

and R. Chellappa. A proposal-based solution to spatio-

temporal action detection in untrimmed videos. In 2019

IEEE Winter Conference on Applications of Computer Vision

(WACV), pages 141–150. IEEE, 2019.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 770–778,

2016.

[13] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-

speed tracking with kernelized correlation filters. TPAMI,

37(3):583–596, 2014.

[14] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997.

[15] R. Hou, C. Chen, and M. Shah. Tube convolutional neural

network (t-cnn) for action detection in videos. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 5822–5831, 2017.

[16] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vi-

jayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, et al.

The kinetics human action video dataset. arXiv preprint

arXiv:1705.06950, 2017.

[17] T. S. Kim, Y. Zhang, Z. Xiao, M. Peven, W. Qiu, J. Bai,

A. Yuille, and G. D. Hager. Safer: Fine-grained activity

detection by compositional hypothesis testing.

[18] R. Kuma, E. Weill, F. Aghdasi, and P. Sriram. Vehicle re-

identification: an efficient baseline using triplet embedding.

In 2019 International Joint Conference on Neural Networks

(IJCNN), pages 1–9. IEEE, 2019.

[19] T. Lin, X. Zhao, H. Su, C. Wang, and M. Yang. Bsn: Boundary

sensitive network for temporal action proposal generation. In

Proceedings of the European Conference on Computer Vision

(ECCV), pages 3–19, 2018.

[20] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and

S. Belongie. Feature pyramid networks for object detection.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2117–2125, 2017.

[21] W. Liu, X. Chang, L. Chen, D. Phung, X. Zhang, Y. Yang,

and A. G. Hauptmann. Pair-based uncertainty and diversity

promoting early active learning for person re-identification.

ACM Transactions on Intelligent Systems and Technology

(TIST), 11(2):1–15, 2020.

[22] W. Liu, X. Chang, L. Chen, and Y. Yang. Early active learning

with pairwise constraint for person re-identification. In Joint

European Conference on Machine Learning and Knowledge

Discovery in Databases, pages 103–118. Springer, 2017.

[23] W. Liu, X. Chang, L. Chen, and Y. Yang. Semi-supervised

bayesian attribute learning for person re-identification. In

Thirty-Second AAAI Conference on Artificial Intelligence,

2018.

[24] S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J. T. Lee,

S. Mukherjee, J. Aggarwal, H. Lee, L. Davis, et al. A large-

scale benchmark dataset for event recognition in surveillance

video. In CVPR 2011, pages 3153–3160. IEEE, 2011.

[25] A. J. Rana, P. Tirupattur, M. N. Rizve, K. Duarte, U. Demir,

Y. Rawat, and M. Shah. An online system for real-time activity

detection in untrimmed surveillance videos.

[26] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

Advances in neural information processing systems, pages

91–99, 2015.

[27] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev,

and A. Gupta. Hollywood in homes: Crowdsourcing data

collection for activity understanding. In European Conference

on Computer Vision, pages 510–526. Springer, 2016.

[28] P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Learning to

track for spatio-temporal action localization. In Proceedings

of the IEEE international conference on computer vision,

pages 3164–3172, 2015.

[29] N. Wojke, A. Bewley, and D. Paulus. Simple online and

realtime tracking with a deep association metric. In ICIP,

2017.

[30] H. Xu, A. Das, and K. Saenko. R-c3d: Region convolutional

3d network for temporal activity detection. In Proceedings of

the IEEE international conference on computer vision, pages

5783–5792, 2017.

7132



[31] L. Yu, P. Chen, W. Liu, G. Kang, and A. G. Hauptmann.

Training-free monocular 3d event detection system for traffic

surveillance. In 2019 IEEE International Conference on Big

Data (Big Data). IEEE, 2019.

[32] L. Yu, D. Zhang, X. Chen, and A. Hauptmann. Traffic danger

recognition with surveillance cameras without training data.

In 2018 15th IEEE International Conference on Advanced

Video and Signal Based Surveillance (AVSS), pages 1–6. IEEE,

2018.

8133


