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Abstract

Recently, deep learning has revolutionized the computer

vision field and has resulted in steep advances in the perfor-

mance of vision systems for human detection and classifica-

tion on large datasets. Nevertheless, these systems rely on

static cameras that do not yield practical results, especially

for prolonged monitoring periods and when multiple object

activities occur simultaneously. We propose that event cam-

eras naturally solve these issues at the hardware level via

asynchronous, pixel-level brightness sensing at microsec-

ond time-scale. In particular, event cameras do not output

data during no-activity periods and thus data rate is drasti-

cally lowered without any additional processing. Secondly,

event cameras produce disjoint spatial outputs for multi-

ple objects without requiring segmentation or explicit back-

ground modeling. Leveraging these attractive properties,

this paper presents an event-based feature learning method

using kernelized correlation filters (KCF) within a boosting

framework. A key contribution is the reformulation of KCFs

to learn the face representation instead of relying on hand-

crafted feature descriptors as done in previous works. We

report a high detection performance on data collected using

an event camera and showcase its potential for surveillance

applications. For fostering further research, we release the

face dataset used in our work to the wider community1.

1. Introduction

Over the past decade, face recognition using deep learn-

ing methods [10, 28] has matured considerably. Since de-

tection of frontal face images under controlled settings has

become easy to achieve [21], a number of recent studies

have emphasized the importance of robustness to adversar-

ial samples that compromise the system security [26, 8]. In

addition, training deep learning methods for face recogni-

tion and analysis is extremely complex and time-consuming

[27] and thus recent works also accommodate traditional

feature extraction methods [7]. In this vein, the develop-

1DAVIS Face Dataset: https://tinyurl.com/rbppctl
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Figure 1. The proposed framework for face detection using an

event camera which is viewing multiple objects, including a hu-

man (recording from [14]). Face locations and randomly sampled

surrounding negative candidate locations are used to obtain weak

classifiers via kernelized correlation filter outputs, which are com-

bined using boosting to determine whether a region is a face.

ment of lightweight face recognition methods is also a hot

topic of research [4], as CNNs that rely on network depth

and thereby on powerful GPUs do not translate well to prac-

tical systems with power constraints.

A core premise of the above methods is a camera that

captures intensity images at a fixed interval regardless of

scene dynamics. For example, a standard camera is pro-

grammed to capture an image at 30 frames-per-second,

which is a reasonable frame rate for simple standalone ap-

plications, and consequently, further analysis using multi-

ple deep learning models for face recognition has limited

application considering the energy requirements [20]. Fur-

thermore, training and deploying deep learning models has

been largely demonstrated by researchers with access to ex-

tensive computational resources. Thus, there is a parallel

need to develop frugal learning frameworks aided by data-

efficient sensors [22].

An alternative to the standard frame cameras, known as

event cameras or silicon retinas, has been recently explored

for various vision tasks [3, 6, 17, 19, 18]. Event cameras re-

act to brightness changes sensed at an individual pixel loca-

tion (x, y), which are further characterized by a timestamp

t and polarity p. The polarity simply specifies the bright-

ness change direction as a binary ON or OFF value. Ad-

ditionally, these events are asynchronously transmitted with

minimal latency in the order of 1-10 µs. Therefore, these
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cameras are well-suited during monitoring periods with no

activity (zero data throughput) and also when multiple ac-

tivities occur at different spatial regions of the image (local

sensing paradigm). We propose the use of event cameras

for public space monitoring, which includes human activity

detection and action recognition.

Figure. 1 illustrates the proposed framework using ker-

nelized correlation filters (KCF) [9] used to extract feature

outputs and then fed to a binary Adaboost framework [5]:

face or background. The key contribution is the reformu-

lation of KCF filters, typically employed as discriminative

trackers [29] due to their computational efficiency in the

Fourier domain (> 100 fps), as feature extraction modules.

Thus, computational efficiency, an important emphasis of

low-latency event-based vision, is also taken into account

in the proposed detection framework.

2. Related Work

Standard face detection. The two prevalent approaches

are either based on local visual features like SIFT [13] or

on sliding window methods [25]. The feature-based ap-

proaches usually follow a three stage pipeline consisting

of keypoint detection, feature extraction and model fitting

(planar assumption [13, 12] or a comprehensive 3-D model

[24]). Based on extensive research that has enabled detec-

tion of a wide array of objects [16, 15], these methods have

also reached a high level of maturity under real-time oper-

ating needs, even on low-power devices [23]. Nonetheless,

the principal drawback is the requirement to detect thou-

sands of image features while knowing the geometrical pri-

ors of the object. This gap is neatly addressed using KCFs

to learn the face geometry without explicit handcrafting.

On the other hand, sliding window-based approaches

[25] search the entire image sequentially using various win-

dow sizes to decide whether it contains the object of inter-

est. For instance, there are approximately 50,000 windows

in a 320x240 resolution image. Therefore, the cascaded

architecture [25] is employed for real-time performance,

which reduces the number of patches to be evaluated at the

final stage with full precision. However, a global sliding

window approach is generally not required for event-based

detection since it provides much sparser image output based

on object activity. In other words, the KCF filters need to be

evaluated only at locations of considerable event activity.

Event-based face detection. Being a comparatively

new research area, limited works in the event-based vision

domain address the problem of face detection or recogni-

tion in general. One such work is [11], which presents an

intuitive approach to face detection by relying on the high-

temporal resolution of the events to detect eye blinks. While

the method presented in [11] is applicable to human faces

in the presence of clearly discernible eye blinks, we develop

a general purpose face detection method based on appear-

ance, similar in spirit to the work on generic object detection

for event cameras [17].

3. Event-based Face Detection

We exploit the seminal KCF work by Henriques et al. [9]

that provides a theoretical framework to study generic clas-

sifiers trained online with all sub-windows (of fixed size) of

a given target image, which they call “dense sampling”. Be-

fore which, almost all of the proposed methods employed a

sparse sampling strategy for creating real-time object rep-

resentations for tracking. Obviously, the sparse sampling

strategy has a reduced computation load compared to a sim-

ple dense sampling strategy. Fortunately, dense sampling of

an image results in a circulant structure that permits the use

of the Fast Fourier Transform (FFT) to incorporate infor-

mation from all sub-windows in a single-shot manner. In

addition, the KCF object representation is competitive with

the state-of-the-art and runs at high frame-rates with a few

lines of code.

Considering the fast and simple implementation of KCF,

we apply it to event-based face representation with the fol-

lowing assumptions. A KCF filter outputs a higher response

for the face representation compared to non-face data. Nat-

urally, the output response of a single KCF face classifier

cannot generalize to many people’s faces. Therefore, we

propose AdaBoost to optimize selection of weak KCF fil-

ters as long as it has an accuracy better than a random guess

(0.5 in this case for face vs. non-face data).

3.1. Correlation Filters for Feature Extraction

Since event cameras do not output intensity frames, we

use an event count matrix that increments the pixel count

by one when it receives an event, as done in [18]. Let us

consider a d-dimensional event count feature representation

of a face in the training set, i.e., f be a M × N feature

patch of the target. The individual face features of f are

denoted by f l where l ∈ {1, · · · , d}. In order to obtain the

corresponding correlation filter h of the same dimension,

the following cost function can be minimized:

ǫ =‖

d
∑

l=1

hl ⋆ fl − g ‖2 +λ

d
∑

l=1

‖ hl ‖2 (1)

where g is the desired correlation output associated with the

training example f . Note that the functions f, g and h are

all of size M ×N . The desired correlation output g is con-

structed as a Gaussian function with its peak located at the

face center in fl. The star ⋆ denotes circular correlation.

The parameter λ ≥ 0 controls the impact of the regulariza-

tion term.

Solving the above problem is straightforward, although

it involves the optimization of a real valued function of a

complex variable. After some mathematical manipulation,
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a closed form expression for the KCF filter can be derived

as follows:

H l =
ḠF l

∑

d

k=1 F̄
kF k + λ

(2)

in which the capital case letters denote the discrete Fourier

transforms (DFTs) of the corresponding functions. As men-

tioned in [1], the regularization parameter alleviates the

problem of zero-frequency components in the spectrum of

f , which would lead to division by zero.

A useful face feature can be obtained by minimizing the

output error over a batch of training patches. We use a batch

size of twenty count matrices of one object to train a single

KCF learner. However, this requires solving a d × d linear

system of equations per pixel. To obtain a robust approx-

imation for online learning applications, the numerator Al
t

and denominator Bt of the correlation filter H l
t

in (2) are

updated separately:

Al
t
= (1− η)Al

t−1 + ηḠtF
l
t

Bt = (1− η)Bt−1 + η
∑

d

k=1 F̄
k
t F

k
t

(3)

where η is the update rate parameter. This means each

“frame”’ has a decreasing effect of the latest frame to the

oldest frame on the learner due to the use of the exponen-

tial moving average strategy. The correlation scores y at a

rectangular region z of a feature map can be computed as:

y = F−1

∑

d

l=1 Ā
lZl

B + λ
(4)

In other words, given any feature patch z, resized to

M ×N if necessary, the correlation scores y are computed

as y = F−1{H̄t ⊙ Z}, using the inverse DFT operator. A

new target location can be estimated to be at the maximum

correlation score of y, which is also the detection output

location. In particular, two key factors are needed for calcu-

lating the kernel matrix k and the response with k of each

KCF learner: (1) Z is the old input feature to correlate with

the new test feature; (2) α is the weight matrix correspond-

ing to the input feature.

κ(x, z) = 〈ϕ(x), ϕ(z)〉
ŷ = F−1

(

F
(

k̄
)

⊙ F (α)
) (5)

where sizes of Z and α of different KCF learners are bound

to be different depending on the size of different faces. A

resize operation is done for the test feature map correspond-

ing to each KCF filter size.

3.2. Event­based Adaboost

AdaBoost is an ensemble algorithm that outputs a

weighted sum of several weak learners as a strong classifier.

This boosting algorithm does not require any prior knowl-

edge about the performance of the weak learning algorithm,

Algorithm 1 Event-based Face Detection via Adaboost

Input: KCF filters (x1, y1), · · · , (xm, ym) where xi ∈ X ,

yi ∈ Y = {−1,+1}
Initialize D1(i) = 1/m

1: for t = 1 : T : do

2: Train weak learner using Dt

3: Obtain weak hypothesis ht : X → {−1,+1}
with error et = Pri∼Dt

[ht(xi) 6= yi].
4: Choose αt =

1
2 ln

1−et

et
the best weak learner

5: Update the distribution:

Dt+1 = Dt(i)
Zt

× exp (−αtyiht(xi))
where Zt simply a normalization factor for Dt+1

6: end for

Output: Final hypothesis H(x) = sign
(

∑

T

t=1 αtht(x)
)
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Figure 2. Average KCF responses of a desirable (Face2) vs. un-

desirable (Face1) weak classifier to various person’s data and non-

face background (BG) data.

but it has two premises. One is that the performance of each

weak learner must be at least better than random guessing.

The other is that the training dataset is big enough.

Algorithm 1 shows the boosting framework applied to

the KCF face classifiers denoted as xi. Firstly, initialize

KCF weights evenly. Then, apply all weak learners among

the training set and calculate error. Next, choose the learner

with lowest error and calculate its weight. Then, update

data weights and go to the next iteration until the classifica-

tion error is less than a threshold or the number of iterations

reaches a set point. Finally, combine all KCF weak learners

into a strong classifier that can determine whether a candi-

date region belongs to a face and for further detection.

Fig. 2 shows sample responses from two different weak

learners or KCF classifiers on various data, including non-

face background (BG) data. A good candidate for the Ad-

aboost framework is one trained on Face2, which has high

responses for faces, whereas Face1 KCF produces an unde-

sirable high response for the BG data, which is some printed

signs on a cardboard box. Thus, some of the assumptions

we made earlier about KCF classifier response is true only

for some weak learners and the Adaboost framework is re-

quired to pick the best set of weak learners.

The subsequent problem of choosing a response thresh-
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Figure 3. Samples from the DAVIS face dataset (Download at https://tinyurl.com/rbppctl).

old to robustly identify the positive class (face) is tackled

by sweeping the real-valued KCF output as part of the Ad-

aboost process exhaustively and recorded during the train-

ing process for each KCF learner.

4. Experiments

We report the proof-of-concept study used for evaluating

the event-based face detection using KCF and Adaboost, as

explained in the earlier section. First, data was collected us-

ing the DAVIS event camera [2], consisting of several peo-

ple as shown in Fig. 3. A stationary DAVIS camera records

the head motion of a person in front of it for about a minute.

The subjects were asked to move their heads from frontal to

side profile and also at various distances to the camera. The

ground truth face positions were annotated manually for the

purpose of training and testing. For the purpose of training

the Adaboost classifier, non-face data was used to provide

negative samples, which are usually surrounding objects as

shown in Fig. 1.

The dataset was randomly divided into 70% for training

and 30% for testing. Accordingly, Fig. 4 shows the variation

in performance of the Adaboost face detection framework

as weak learners are added (Alg. 1). The detection accu-

racy increases as expected and tapers off after accumulating

about 50 KCF weak learners from different people. Note

that with just one optimal weak learner selected by Ad-

aboost, the system performance is already about 70%. This

showcases the ability of the proposed event-based frame-

work to distinguish between faces and non-faces.

Further experiments using a lower train-test split ratio of

10-90% still resulted in a detection performance of 84.42%,

which shows the capacity of the KCF weak learners selected

by Adaboost to generalize other faces while rejecting sur-

rounding background information. Subsequently, we pitted

the faces against each other (instead of BG) and the recogni-

tion accuracy was 35%, which implies that the KCFs do not

learn fine-grained features to distinguish between the faces.

Finally, we report comparison with the traditional Ad-

aboost framework for face detection as it is a closely related

method [25]. The standard Viola-Jones detector tested on

the DAVIS face dataset (70-30% split) obtains 40.4% detec-

tion accuracy, which is much lower compared to our results.

This is probably because of the low resolution of the event
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Figure 4. Impact of weak learners on the validation accuracy.

camera as well as the lack of RGB information.

Due to the low resolution of the DAVIS camera (240 ×
180), it remains harder to test wide field-of-view (FOV)

recordings, although the DAVIS face dataset is suitable for

developing other face recognition systems. Newer event

cameras developed by CelePixel with 1280 × 800 image

resolution can address the FOV problem easily. Besides, the

study presented here is preliminary, since only the classifi-

cation of candidate regions-of-interest has been presented

while the method to obtain them has been assumed. This

will be one of the future works in addition to mining nega-

tive samples for the Adaboost framework in the general case

of recordings with multiple faces in the field-of-view.

5. Conclusion

This paper presented one of the first event-based face de-

tection frameworks by using kernelized correlation filters

within an Adaboost classification scheme. The main con-

tribution was the reformulation of KCFs to learn the face

representation instead of relying on handcrafted feature de-

scriptors as done in earlier works. We reported a high de-

tection performance (87%) on the DAVIS face dataset, even

at low train-test split ratios (84%). Finally, we reported 2x

higher performance compared to the standard Viola-Jones

face detector. For fostering further research, our dataset has

been made publicly available.
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