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Abstract

Document structure extraction has been a widely re-

searched area for decades. Recent work in this direction

has been deep learning-based, mostly focusing on extract-

ing structure using fully convolution NN through semantic

segmentation. In this work, we present a novel multi-modal

approach for form structure extraction. Given simple ele-

ments such as textruns and widgets, we extract higher-order

structures such as TextBlocks, Text Fields, Choice Fields,

and Choice Groups, which are essential for information col-

lection in forms. To achieve this, we obtain a local image

patch around each low-level element (reference) by iden-

tifying candidate elements closest to it. We process tex-

tual and spatial representation of candidates sequentially

through a BiLSTM to obtain context-aware representations

and fuse them with image patch features obtained by pro-

cessing it through a CNN. Subsequently, the sequential de-

coder takes this fused feature vector to predict the associ-

ation type between reference and candidates. These pre-

dicted associations are utilized to determine larger struc-

tures through connected components analysis. Experimen-

tal results show the effectiveness of our approach achiev-

ing a recall of 90.29%, 73.80%, 83.12%, and 52.72% for

the above structures, respectively, outperforming semantic

segmentation baselines significantly. We show the efficacy

of our method through ablations, comparing it against us-

ing individual modalities. We also introduce our new rich

human-annotated Forms Dataset.

1. Introduction

Document semantic structure extraction (DSSE) is an

actively-researched area [10, 11, 31, 34]. Forms are docu-

ments that are widely used to acquire information from hu-

mans across different domains such as health care, adminis-

tration and financial systems. Organizations using forms for

several decades would like to digitize them to enable index-

ing, accessibility etc. for themselves as well as for provid-

ing seamless digital experiences (such as re-flow) to their

users [1, 7, 16, 23]. In order to do this, forms are converted

into PDFs/Acroforms with information about only elemen-

tary level structures like text,images,widgets embedded in

them. However, they do not contain any information about

higher order structures. Since the elementary level struc-

tural information is not enough to digitise a form document,

there is a need to extract higher order constructs.

A form page broadly comprises of textruns and widgets

as its smallest constituent elements. Widgets are spaces pro-

vided to fill information. Every widget has some text asso-

ciated with it which describes what needs to be filled in the

widget. A textrun is a small chunk of text, often a single

line or a word. Such lower elements act as building blocks

in larger constructs such as textblocks, text fields, choice

fields, choice groups etc. A textblock is a logical block of

self-contained text comprising of one or more textruns, a

text field is a collection of a caption and widgets where cap-

tion is a textblock which describes what to fill in the wid-

gets. A choice field is a boolean field containing a caption,

a radio button type widget and optional widgets provided

to write text if required. A ChoiceGroup is a collection

of choice fields and an optional choice group title which

is a textblock that specifies various details or instructions

regarding filling the choice fields. Figure 1 shows different

elements and structures in a sample form.

In this work, we propose a hierarchical multi-modal bot-

tom up approach to detect larger constructs in a form page.

We create a two step pipeline where we train a model to

predict textblocks given textruns and widgets as input in

the first step and train another model (having similar archi-

tecture) separately in the second step to extract larger con-

structs that are intrinsic and unique to forms such as text

fields, choice fields and choice groups using the widgets

and extracted textblocks. We leverage the fact that elements

constituting a larger construct are present in close proxim-

ity. For instance, textruns constituting a textblock can be

consecutive lines of text. Similarly, choice fields that are
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Figure 1. Part of an example form illustrating elements and structures at different levels of hierarchy.

part of a choice group are arranged closer to one another.

Specifically, we determine a local neighbourhood around

each element (reference) based on fixed number of other

elements (candidates) nearest to it (candidates include the

reference as well for guidance). We train our models to

identify candidates in the neighbourhood with which ref-

erence can be associated as part of a larger construct. To

achieve this, we extract an image patch corresponding to

the reference neighborhood and process it through a CNN.

We also extract text content of the candidates and process

it through an LSTM [12] based text encoder to obtain their

textual representation. Additionally, we concatenate spatial

coordinates of candidates with their textual representation.

For a given candidate, since the association with the ref-

erence can be guided depending on other candidates, we

arrange the candidates in a sequence according to natural

reading order. We process the corresponding sequence of

concatenated representations through a BiLSTM [14] to ob-

tain context aware candidate feature representations. Sub-

sequently, we use an attention based fusion mechanism [29]

to combine visual, textual and spatial modalities by fusing

context aware feature representation of each candidate with

the output of CNN. The fused representation corresponding

is passed through a final Seq2Seq [30] based decoder that

sequentially predicts association between the reference and

different candidate elements. These associations are used to

construct an association graph between different elements

such that final higher order elements are extracted through

determining connected components.

Document structure extraction has been studied exten-

sively with recent works mostly employing deep learning

based fully convolution neural networks [11, 31, 34]. They

extract structures through performing semantic segmenta-

tion [21] over document image. Such methods perform

well at extracting coarser structures. However, our Forms

Dataset comprises of dense form images (having resolution

up to 2000 pixels) with closely spaced elements and higher

order constructs. Segmentation based methods generally

extract structures for the entire page in a single forward

pass. Due to memory constraints, such methods downscale

the original image before giving it as input to their model.

Hence they end up merging different structures since down-

scaling makes it difficult to disambiguate closely spaced

structures. We instead take a different approach where we

formulate structure extraction as an association task such

that these associations are made based on local contextual

information. Our contributions can be listed as :

• We propose a multi-modal approach for forms struc-

ture extraction, specifically for the task of extracting

higher order constructs from lower level elements. We

perform ablations by evaluating individual modalities

for the same task and comparing against the multi-

modal version.

• We show the effectiveness of our approach to dis-

ambiguate closely spaced structures. Our approach

outperforms two semantic segmentation baselines de-

signed for segmenting natural and document images

respectively.

• We introduce our new rich human annotated Forms

Images Dataset comprising of text content, spatial in-

formation tags and other larger construct annotations.

2. Related Work

A closely related problem is of document structure ex-

traction. Earlier works for document layout analysis have

mostly been rule based with hand crafted features for ex-

tracting coarser structures such as graphics and text para-

graphs [19], cut algorithms & connected components for

segmenting image and determining text regions [8], and

other methods for determining physical layouts [28]. These

are generally categorized into bottom-up [6] and top-down

approaches [9] with former focusing on detecting text lines

& composing them into paragraphs and the latter detect

page layout by diving it into columns and blocks.

With the advancement in deep learning, recent ap-

proaches have mostly been fully convolution neural net-
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work (FCN) based that eliminate the need of designing

complex heuristics [11, 31, 34]. FCNs were successfully

trained for semantic segmentation [21] which has now be-

come a common technique for page segmentation. The high

level feature representations make FCN effective for pixel-

wise prediction. FCN has been used to locate/recognize

handwritten annotations, particularly in historical docu-

ments [18]. [32] proposed a model that jointly learns hand-

written text detection and recognition using a region pro-

posal network that detects text start positions and a line

following module that incrementally predicts the text line

which is subsequently used for reading.

Several methods have addressed regions in documents

other than text such as tables, figures etc. Initial deep learn-

ing work that achieved success in table detection relied on

selecting table like regions on basis of loose rules which are

subsequently filtered by a CNN [10]. [11] proposed multi-

scale, multi-task FCN comprising of two branches to de-

tect contours in addition to page segmentation output that

included tables. They additionally use CRF (Conditional

Random Field) to make the segmented output smoother

and induce dependency among pixels. For the task of fig-

ure extraction from scientific documents, [27] introduced

a large scale dataset comprising of 5.5 million document

labels. They find bounding boxes for figures in PDF by

training Overfeat [25] on image embeddings generated us-

ing ResNet-101 on this dataset.

Few works have explored alternate input modalities such

as text for other document related tasks. Multi-modal meth-

ods have been proposed to extract predefined named entities

from invoices [15, 20]. Graph Neural Networks (GNNs)

have been used to detect tables in invoice documents [24]

as well as for association based table structure parsing [22].

Document classification is a partly related problem that has

been studied using CNN-only approaches for identity doc-

ument verification [26]. [35] have designed HAN which

hierarchically builds sentence embeddings and then docu-

ment representation using multi-level attention mechanism.

Other works explored multi-modal approaches, using Mo-

bileNet [13] and FastText [4] to extract visual and text fea-

tures respectively, which are combined in different ways

(such as concatenation) for document classification [2]. In

contrast, we tackle a different task of form layout extraction

which require recognising different structures present in a

form document.

[34] also proposed a multimodal FCN (MFCN) to seg-

ment figures, tables, lists etc. in addition to paragraphs

from documents. They concatenate a text embedding map

to feature volume according to pixel-text correspondence

in the original image. In addition, they show improve-

ments through unsupervised learning using region consis-

tency loss over the segmented output to obtain regular seg-

mentation. As baselines for the tasks proposed, we consider

image based semantic segmentation approaches. We com-

pare the performance of our approach with 1) their FCN

based method and 2) DeepLabV3+ [5], which is state of the

art deep learning model for semantic segmentation.

3. Methodology

In this section, we discuss our approach to detect vari-

ous elements like textblocks, text fields, choice fields and

choice groups in a form document. Since each of these

higher order constructs is a collection of lower elements, we

formulate their detection as a grouping task over such ele-

ments. We achieve this through a two step pipeline where

in the first step, we train a model that groups textruns into

textblocks given textruns and widgets as input. And in the

second step, we train another model separately having sim-

ilar architecture but which takes textblocks and widgets as

inputs and groups them into higher order constructs - text

fields, choice fields and choice groups.

3.1. Input Pipeline

Let tr, tb and wi be the set of textruns, textblocks and

widgets respectively present in a form page. For both the

pipeline steps, let t1 and t2 be the collection of lower ele-

ments. Here, t1 = tr and t2 = wi for textblock predic-

tion step while t1 = tb and t2 = wi for higher order con-

struct grouping. For every element er ∈ t1, we determine

a neighbourhood patch p around it comprising of elements

ep which are obtained by ranking elements in t1
⋃

t2 in as-

cending order according to their distance from er. We then

pick top k1 and k2 elements from t1 and t2 respectively

according to the ranked list. We call er as reference ele-

ment while other selected elements as candidate elements.

Hence, ep = ep1
⋃

ep2; ep1 ⊆ t1; ep2 ⊆ t2; |ep1| ≤ k1; and

|ep2| ≤ k2. Each form page element’s location is specified

through four bounding box values - x, y, w, h, where x and

y are the coordinates of mid-point of bounding box and w
and h are its width and height respectively. Given reference

element a and candidate element b, distance of b form a is

d(a, b) = 10 ∗min(|ya − (yb − hb/2)|,

|ya − yb|, |ya − (yb + hb/2)|)+

min(|xa − (xb − wb/2)|,

|xa − xb|, |xa − (xb + wb/2)|)

(1)

We consider elements which are present closer in verti-

cal direction to the reference to be more appropriate choice

for candidate elements. This takes more horizontal con-

text into account (hence a larger weight of 10 to vertical

distance term in eq(1)). We measure the distance between

reference’s mid point with the middle and extreme edges

of candidate elements from both the directions leading to

our distance formulation above. Once ep is determined, we
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Figure 2. Sub-sequence of patch images for reference textblock ”Individual” (blue): Patch images corresponding to candidates (green) in

sub-sequence have been shown.

cut an image patch p around the reference er which is de-

termined through taking union of bounding boxes of ele-

ments in ep. We highlight the reference er in p by draw-

ing its bounding box in blue. We arrange the elements in

ep according to natural reading order (from left to right

and top to bottom) to obtain a sequence of elements ap =
{ap1, a

p
2, a

p
3, ..., a

p
k1+k2

}. Let bba = {bba1 , bb
a
2 , ..., bb

a
k1+k2

}
be the corresponding bounding box coordinates sequence

such that bbai = {xa
i , y

a
i , w

a
i , h

a
i } represent x-y coordinates

of the top left corner, width and height respectively. We nor-

malise these coordinates to range [0, 1] with respect to the

unified bounding box of the patch (through considering top

left corner of patch as origin and dividing by patch dimen-

sions), thus obtaining bbn = {bbn1 , bb
n
2 , ..., bb

n
k1+k2

}. For

each element api , we modify p to highlight api by drawing

its bounding box around it in green to create an image patch

imp
i like in fig2. We then re-size the modified patch image

to H ×W and concatenate a normalised 2-D mesh grid of

same resolution along the channels, obtaining a 5-channel

image. We thus obtain the corresponding final patch im-

age sequence imf
p = {imp

1, im
p
2, im

p
3, ..., im

p
k1+k2

} where

each patch has one element api highlighted. In addition to

these images we also have text content tai of each element

api . The sequences bbn, imf
p and ta are given as input to the

model that predicts which elements can be associated with

the reference element er to form a higher order group.

3.2. Model Architecture

Our model comprises of different sub-modules trained

jointly - Image Encoder (IE) that takes each patch image in

imf
p to generate its feature representation through a CNN;

LSTM based Text Encoder (TE) that processes each tai to

obtain its text embedding; a Bi-LSTM based Context En-

coder (CE) that takes the concatenated sequence of nor-

malised spatial coordinate and text embedding to gener-

ate context aware representations for each candidate in the

patch, Fusion Module (FM) that fuses these context aware

representations with the corresponding image patch fea-

tures, and a final LSTM based Sequential Association Mod-

ule (SAM) that predicts the association between reference

element er and other candidate elements in the sequence.

Figure 3 shows a detailed architecture of our approach de-

picting each sub-module and overall model pipeline. We

discuss each of these modules in detail.

Image Encoder : Each image patch imp
i in the se-

quence imf
p has size H × W × 5 (RGB patch with 2d

mesh grid) and is processed through a CNN comprising of

ncb convolution blocks. Convolution block cbj comprises

of ncl
j convolution layers each having fj filters with ker-

nel size kj × kj , stride = 1. We discuss the exact value of

the hyper-parameters later in implementation details. After

each convolution block, we apply a max-pooling layer hav-

ing kernel size 3× 3 and stride = 2. CNN outputs a feature

representation fV
i of size H ′ × W ′ × C ′ where C ′ is the

number of feature maps. This fV
i is later on used in the

multi modal fusion phase. In addition to this an auxiliary

branch is created with a flattened fV
i being passed through

a FCN comprising of 2 fully connected layers each having

FCc units to obtain the final representation fp
i for image

patch imp
i . Finally, fp

i is passed through the final predic-

tion FC layers which predicts the association of the current

candidate element api with the reference element. For the

first pipeline step where we group textruns into textblocks,

we use a single FC prediction layer with sigmoid activation

which gives a binary classification output; while for second

pipeline step, we use two FC prediction layers - one with

softmax activation to perform 3-way classification to pre-

dict if a textblock can be grouped with a candidate textblock

or widget into “field”, “choicefield” or “not related” while

the second prediction layer outputs a binary decision if a

textblock can be grouped with a candidate textblock or wid-

get into a choice group. Using the auxiliary branch helps in

training the CNN features which are used further in fusion

stage and Sequential Association Module.

Text Encoder : Consider an element api having text tai
comprising of words {wi1, wi2, ..., win}. Since the text in-

formation is obtained through PDF content, the words often

contain noise, making use of standard word vectors diffi-

cult. To mitigate this, we obtain word embeddings using

python library chars2vec1. This gives a sequence of em-

beddings {wei1, wei2, ..., wein} which is given as input to

1https://github.com/IntuitionEngineeringTeam/chars2vec
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Figure 3. Detailed view of our model architecture with input patches for different candidates given as input to CNN. Spatial and textual

information is processed through Text Encoder (TE) and Context Encoder (CE). This representation is fused with CNN output for each

candidate. Fused representation is given as input to Association Decoder that predicts the final output.

an LSTM - TE, that processes the word embeddings such

that the cell state cti after processing last word is used as

text representation for api . A widget’s textual representation

is taken as a vector of 0s. This text representation is further

passed through a fully connected layer with 100 units and

ReLU activation to obtain f t
i .

Context Encoder : Consider a sequence element api
with corresponding textual representation f t

i and spatial co-

ordinates bbni . Let ri be a binary flag indicating if the ith

element in the sequence is the reference element. Hence

it is 1 for reference element and 0 for others. We obtain

cei = [bbni ||f
t
i ||ri] to represent the element, where opera-

tor || represents concatenation. The sequence ce is given as

input to a BiLSTM [14] - CE, which produces a context

aware representation bi for each element in the sequence.

Fusion Module : In this module, we fuse the con-

text aware representations bi with the corresponding image

patch feature representation fV
i following attention based

fusion mechanism [29]. To achieve this, we use bi as 1× 1
filter to perform 2-D convolution over feature volume fV

i .

To achieve this we configure the size of LSTMs in CE to

make it compatible with C ′. This gives a single channel

fused feature map with dimension H ′ ×W ′. We flatten this

fused map to obtain ffused
i having H ∗W dimension which

is used in the final decoder stage.

Sequential Association Module : Our SAM module

comprises of standard Seq2Seq [30] decoder where we pre-

dict association decision between reference and candidate

api sequentially conditioned on predictions made for pre-

vious candidates apj where j < i. To achieve this, we

use LSTM based decoder SAMLSTM which is given as

input [bbni ||f
fused
i ||predi−1], where predi−1 is prediction

made for the previous candidate (as in Seq2Seq framework).

Additionally, we use Bahdnau attention mechanism [3] to

make SAMLSTM attend on context memory M, where

M is obtained by stacking CE outputs {b1; b2; ..., bk1+k2
}

column-wise. We use fully connected prediction layers over

the outputs of SAMLSTM for both pipeline steps similar to

the prediction layers used in the auxiliary branch of IE.

3.3. Training and Inference Details

All the modules - IE, TE, CE, FM and SAM are trained

end-to-end. In the first pipeline trw2tb, we train the net-

work to predict association among the textruns that con-

stitute a textblock. Patch information determined corre-

sponding to a reference textrun constitutes a single training

sample for our model. We use binary cross entropy loss

(BCE) over binary association predictions made by aux-

iliary branch of IE (BCETB
conv) and sequential predictions

made by SAM (BCETB
seq ) to train entire network. Hence,

losstrw2tb = BCETB
conv +BCETB

seq (2)

Similarly, the second pipeline tbw2fcg (having simi-

lar architecture but trained separately) is trained to predict

associations among textblocks and widgets that constitute

fields/choice fields and choice groups through separate pre-

diction layers discussed above. For field and choice field
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association task, we train the network to associate textblock

to other textblocks and widgets within its local patch that

are part of the same construct and predict construct type i.e.

field or choice field through 3-way classification. Given a

choice group chgp, consider a reference er and a candidate

ec in its patch. Let eCGT
r = 1 if er is the title of chgp,

eCFC
r = 1 if er is the caption of a choice field in chgp,

eCGT
c = 1 if ec is the title of chgp, eCFC

c = 1 if ec is

the caption of a choice field in chgp and eCW
c = 1 if ec

is a widget of a choice field in chgp and er is the caption

of same choice field. Let eCGT
r , eCFC

r , eCGT
c , eCFC

c , eCW
c

be 0 otherwise. We create training label labelrc for choice

group task as follows :

labelrc =























1 if eCGT
r = 1 and eCFC

c = 1
1 if eCFC

r = 1 and eCGT
c = 1

1 if eCFC
r = 1 and eCW

c = 1
1 if eCFC

r = 1 and eCFC
c = 1

0 otherwise

We create the positive labels selectively since associ-

ating a choice group title with the widgets of its choice

fields might end up confusing the network. We compute

cross entropy loss (CE) over field classification predicted

by auxiliary branch of IE (CEField
conv ) and sequential predic-

tions made by SAM (CEField
seq ) and binary cross entropy

(BCE) loss over choice group associations predicted by IE

(BCEChgp
conv ) and SAM (BCEChgp

seq ) to train entire network.

Hence, total loss for pipeline tbw2fcg model becomes

losstbw2fcg = CEField
conv + CEField

seq +

BCEChgp
conv +BCEChgp

seq

(3)

We train the tbw2fcg model on tagged textblocks and

widgets data. During inference, we use the textblocks

predicted by the tr2tb model with ground truth widgets

as input for evaluation. Additionally, we use ground

truth labels as previous step prediction input for SAM
during training and use its own prediction during inference

following standard teacher forcing technique [33].

Post Processing and Evaluation Metric : Since our model

predicts associations between different elements, we obtain

the final construct by finding connected components over

element association graph. For textblock prediction, we

construct an undirected graph GTB = (tr, E) such that an

edge between tri and trj exists iff the network associates

reference textrun tri with candidate textrun trj and vice-

versa. Likewise, we follow a similar approach for determin-

ing fields, choice fields and choice groups. Since textruns

and widgets are building blocks for every higher order con-

struct, we decompose a higher order construct into its con-

stituent textruns and widgets to determine correct matches.

Given a set of tagged groups {g1, g2, g3, ..., gm} and a set of

predicted groups {p1, p2, p3, ..., pk} of the same construct

type, we say a group pi matches gj iff the former contains

exactly the same Textruns and Widgets as the latter. This is

a stricter measure compared to image based methods which

mostly uses IoU.

4. Experiments

4.1. Dataset

We have used our Forms Dataset2 comprising of 5K
forms. Textruns’ text content and bounding box coordinates

are obtained from the PDF used for extracting form page

images. We got the dataset annotated with bigger constructs

such as text fields, choice fields and choice groups. We take

a split of 4417 and 490 form pages for training and testing

respectively. Table 1 summarises dataset statistics.

Table 1. Dataset Statistics
Construct # Train # Test

TextBlocks 192188 21141

Text Fields 65789 6678

Choice Fields 43959 4426

ChoiceGroups 15507 1762

4.2. Implementation Details

In the input pipeline, we set large enough values of

k1 = 6 and k2 = 4 for textblock prediction and k1 = 10
and k2 = 4 for the second pipeline model. For Im-

age Encoder IE, we set input resolution H = 160 and

W = 640, ncb = 5 with [ncl
j ]j=1,2,3,4,5 = [2, 2, 3, 3, 3],

[fj ]j=1,2,3,4,5 = [32, 64, 96, 128, 256] and [kj ]j=1,2,3,4,5 =
[5, 3, 3, 3, 3]. CNN output feature volume has dimensions

H ′ = 5, W ′ = 20 and C ′ = 256. In auxiliary branch,

FCC = 1024. All convolution layers have ReLU activa-

tion. For the text encoder TE, we fix the size of text in an

element to a maximum of 200 words. We use chars2vec

model which outputs 100 dimensional embedding for each

word and fix the LSTM size to 100. For context encoder CE,

we use a hidden size of 128 for both forward and backward

LSTMs. We set the hidden size of SAMLSTM to 1000 with

size of attention layer kept at 500. We train all the mod-

els using Adam Optimizer [17] at learning rate 1 × 10−4

and batch size 8 without hyper-parameter tuning on a single

Nvidia 1080Ti GPU.

4.3. Results

Comparison with baselines : We first compare

our method, Multi-modal Patch Association Network

(MMPAN ) where textblocks extracted from the first step

2We plan to make a part of this dataset available at

https://github.com/MMPAN-forms/MMPAN
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Table 2. Comparison of Recall and Precision (in %) for different structures of our model with the baselines and ablation methods

Method TextBlock TextField ChoiceField ChoiceGroup

Recall Precision Recall Precision Recall Precision Recall Precision

DLV 3+ 22.10 42.39 19.35 30.87 21.46 25.49 38.06 23.16

MFCN 63.25 37.23 37.12 38.94 31.45 14.24 30.99 26.85

woTE 88.62 85.74 68.97 78.81 81.65 85.82 46.93 44.29

woCE 89.06 85.64 70.76 81.28 82.58 86.14 46.99 45.67

CPAN 87.96 85.83 69.88 78.56 81.54 83.08 42.73 38.87

SPAN 84.96 74.45 60.69 66.50 72.72 79.11 34.90 31.79

MMPAN 90.29 85.94 73.80 80.01 83.12 85.91 52.72 52.22

Table 3. Recall and Precision (in %) of our proposed approach and ablation methods. Tagged textblocks are given as input to second

pipeline step instead of first step outputs.

Method TextBlock TextField ChoiceField ChoiceGroup

Recall Precision Recall Precision Recall Precision Recall Precision

woTEGT 88.62 85.74 82.40 89.80 88.16 90.35 52.04 48.98

woCEGT 89.06 85.64 84.37 92.43 89.63 90.68 54.99 51.62

CPANGT 87.96 85.83 83.68 89.47 88.93 88.65 48.52 44.07

SPANGT 84.96 74.45 72.63 79.66 79.95 85.40 44.55 40.27

MMPANGT 90.29 85.94 86.83 90.87 89.70 90.70 60.15 57.73

are used as input for the second pipeline step, with the base-

lines. We consider two image semantic segmentation base-

lines - DeepLabV3+ (DLV3+) [5] and MFCN [34]. We train

them with an aspect ratio preserving resize of form image

to 792x792. For fair comparison with our approach, we

use textruns and widgets binary masks as prior by high-

lighting corresponding regions in a single channel image

and concatenate them with the resized form image to obtain

the input. For MFCN, loss for different classes are scaled

according to pixel area covered by elements of each class

(calculated over the dataset) as described in their work. For

each baseline, we train a single model3 to extract all higher

order constructs by processing the penultimate layer output

through 3 separate prediction layers - one binary classifi-

cation layer each for textblocks and choice groups and a

ternary classification layer to classify each pixel into field,

choice field or background. We report recall and precision

for each form structure for different methods in table 2.

For baselines, we match expected groups with segmented

outputs through computing Intersection over Union - IoU,

keeping a threshold of 0.40 for a correct match. Our method

(MMPAN ) outperforms both the baselines by a very large

margin for all the constructs in both precision and recall,

even with a much stricter evaluation criteria.

Figure 4 shows structures extracted by our method (top

row) and segmentation masks predicted by MFCN (bottom

row). It can be seen that MFCN often merges closely spaced

textblocks and text fields, is unable to predict complete

choice fields and choice groups which might be because it is

unable to capture horizontal context. On the other hand, our

3We also experimented training separate model for each construct for

each baseline but it did not provide any improvements

method is able to disambiguate closely spaced textblocks,

extracts all the text fields and choice fields correctly and is

able to identify both the choice groups with one wrong hal-

lucination.

Ablation Studies : To determine the effectiveness of our

multi-modal approach, we consider two different variants

of MMPAN : 1) woTE where we omit text; 2) woCE
where we replace context encoder (CE) Bi-LSTM with an

FC that processes spatial and textual representations with-

out taking patch context; 3) CPAN (Convolution Patch As-

sociation Network), where the outputs of auxiliary branch

of Image Encoder are used to determine final constructs

instead of SAM ; 4) SPAN (Sequence Patch Association

Network), where we train the model without visual modal-

ity. To do this, we modify the MMPAN by removing IE

and FM modules and omit fused representation from the

input of SAMLSTM . Table 2 summarises the metrics for

different constructs for all the variants. It can be seen that

MMPAN performs better than both woTE and woCE,

especially for choice groups where context is most impor-

tant. For fields, the ablation methods have better precision

at the cost of recall while MMPAN has better recall and F-

score. CPAN and SPAN perform inferior to MMPAN
in both recall and precision for all constructs. In particular,

SPAN performs the worst while CPAN performs compa-

rable to MMPAN . Comparing MMPAN with CPAN
: For textblocks, it achieves 2.33% higher recall with sim-

ilar precision; for text fields it achieves 3.92% and 1.45%
higher recall and precision respectively; for choice fields it

shows an improvement of 1.58% and 2.83% in recall and

precision respectively while for choice groups, MMPAN
performs significantly better with 9.99% higher recall and
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Figure 4. Visualization : Top row shows sample form image (left), bounding box of textblocks (middle - red), text fields (right - red), choice

fields (right - green) and choice groups (right - blue) predicted by our method. Bottom row shows MFCN segmentation masks - textblocks

(left), text fields (middle - red), choice fields (middle - green) and choice groups (right).

13.35% higher precision. We believe this is because choice

group is a much larger construct such that association be-

tween reference element and candidates in its patch that are

part of the same choice group are interdependent. Hence the

sequential association decoder is able to capture such de-

pendencies. On the other hand, much inferior performance

of SPAN indicates the importance of using visual modal-

ity and efficacy of multi-modal fusion approach.

Table 3 shows results of these variants when tagged

textblocks (ground truth) are given as input to the second

step of the pipeline instead of textblocks extracted in the

first step. Under this setting, we refer to different variants

with subscript GT . We observe that for each variant, there

is a drop in performance (except for textblocks since the

first stage remains unaffected). On comparing correspond-

ing rows in table 3 and table 2, the drop in performance is

most significant for text fields followed by choice group and

choice fields. We attribute this behaviour to the fact that in-

correctly grouped textblocks in the first step propagates er-

ror to the second step. This paves way for further scope of

improvement where both the steps are trained together.

5. Conclusion

In this paper, we present a novel multi-modal approach

for forms structure extraction. Our proposed model uses

only lower level elements - textruns and widgets as input

to extract larger constructs in a two step pipeline where we

extract textblocks first and build upon them with widgets to

extract text fields, choice fields and choice groups. Given

an element, we train our networks to identify candidate el-

ements in a local neighborhood around it with which it can

be grouped using visual, textual and spatial modalities. We

establish the efficacy of our multi-modal method by com-

paring it against individual modality variants. We introduce

a stricter and more accurate evaluation criterion (than IoU

measures) for evaluating our method. Using this we show

that our model gives better results compared to current se-

mantic segmentation approaches evaluated on IoU metric.
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