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Abstract

Text-based person search aims to retrieve the pedes-

trian images that best match a given text query. Existing

methods utilize class-id information to get discriminative

and identity-preserving features. However, it is not well-

explored whether it is beneficial to explicitly ensure that the

semantics of the data are retained. In the proposed work, we

aim to create semantics-preserving embeddings through an

additional task of attribute prediction. Since attribute anno-

tation is typically unavailable in text-based person search,

we first mine them from the text corpus. These attributes are

then used as a means to bridge the modality gap between the

image-text inputs, as well as to improve the representation

learning. In summary, we propose an approach for text-

based person search by learning an attribute-driven space

along with a class-information driven space, and utilize

both for obtaining the retrieval results. Our experiments on

benchmark dataset, CUHK-PEDES, show that learning the

attribute-space not only helps in improving performance,

giving us state-of-the-art Rank-1 accuracy of 56.68%, but

also yields humanly-interpretable features.

1. Introduction

Person search is a class of video surveillance prob-

lems that addresses image retrieval from diverse and large

databases of pedestrian images. The details of the person

to be searched can be provided as an image, or a list of at-

tributes or as a natural language description. Based on the

modality of the query, the problem can be broadly catego-

rized into image-based, attribute-based and text-based per-

son search [33, 18, 11, 12].

In this paper, we focus on text-based person search. For-

mally, the task of text-based person search is: given a text

description of the person to be searched and a large gallery

of images, it is required to rank the images according to

their relevance to the query text, and return the best match-

ing images [11]. The problem of text-based person search is

interesting as it involves challenges associated with person

re-id as well as those associated with cross-modal retrieval.

One of the main challenges of person search is to learn

image features that are robust to the changes in viewing con-

ditions, such as pose, illumination and camera viewpoints.

Furthermore, the pedestrian images are generally of low

resolution and may also be occluded, which demands ad-

ditional focus on better image representations. In the task

of cross-modal retrieval, due to the intrinsic difference in

image and text domain, features of different modalities are

not directly comparable [32, 24]. Hence, cross-modal re-

trieval introduces an additional challenge of reducing the

heterogeneity in the input caused by the modality differ-

ence. Moreover, in text-based person search, the identities

of persons present in test time are disjoint from the iden-

tities used in training. Hence, we need to ensure that the

features are modality-invariant as well as transferable from

the seen classes to the unseen classes.

To address the above challenges, we propose an ap-

proach based on learning a semantics-driven image-text

common embedding and we utilize attributes as a means to

represent the semantics of the data. Attributes are humanly-

understandable semantic concepts, such as gender, age,

clothing description, and are used as soft biometrics in hu-

man search [13, 12, 23]. Since, for a given person, attributes

are modality-invariant, they can help in bridging the modal-

ity gap. Additionally, unlike class labels which are known

only for seen classes, attributes are universal concepts, ap-

plicable to both seen and unseen classes. This suggests that

attributes are good representatives for the semantics of data

and can help in addressing the challenges associated with

text-based person search. Based on these reasons, we hy-

pothesize that through an additional task of learning to iden-

tify attributes, the model will get aid in the task of retrieval.

In text-based person search, image-text pairs are not an-

notated with the corresponding attributes. Hence, we au-

tomatically mine the annotation for the training datapoints

from their corresponding text descriptions (Fig. 1), thereby

circumventing the need for manual annotation. To utilize

these attributes for improving the image-text representa-

tions, we present a novel hierarchical model in which each

text/image datapoint is projected onto two levels of com-

mon embedding spaces: a) a mid-level, semantics-driven,
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attribute-space and b) a high-level, class-driven, latent-

space. In the attribute-space, the features are trained us-

ing the mined attributes, such that they are capable of pre-

dicting the correct attributes. Unlike in attribute-based re-

id, which uses attributes for learning image features, we

use attributes for improving both image and text features

in attribute-space. In addition, we also learn discrimina-

tive, identity-preserving high-level features. Intuitively, the

attributes-driven features help the model to rank the data-

points using semantic similarity, while the class-driven fea-

tures help to rank using latent, identity-based information.

We show that both these mid-level semantics-preserving

features and high-level discriminative features, when used

in combination, improve retrieval performance in the task

of text-based person search. Our contributions, therefore,

can be summarized as follows:

• We propose a novel framework to learn common repre-

sentations for image and text, such that semantics are

explicitly preserved in the features. For this, we first

automatically extract attributes for the classes in the

training data from their text descriptions. Then, a hier-

archy of features is learnt, such that the mid-level fea-

tures are attributes-driven, and the high-level features

are identity- preserving. We further propose a novel se-

mantic triplet loss, which provides an adaptive margin

to triplet loss. We also motivate and propose a novel

norm-regularization constraint to further improve the

learning of feature spaces.

• We validate our approach through extensive experi-

mentation on CUHK-PEDES [11], and show that our

method achieves the state-of-the-art performance.

2. Related work

Cross-modal retrieval. Many research areas such as

image captioning, visual question answering, cross-modal

retrieval [15, 8, 16, 25] involve learning relation between

image and text data. Since cross-modal retrieval [32, 25] is

closely related to text-based person search, we review the

works related to it. A popular method for cross-modal re-

trieval is to learn an image-text joint space in which the two

modalities can be compared. Canonical Correlation Analy-

sis(CCA) and DeepCCA [28] learn a linear and non-linear

projection respectively such that the image and text vectors

have high correlation in the joint space. Weston et al. and

Frome et al. [27, 5] used uni-directional ranking loss, while

Wang et al. and Faghri et al. [25, 4] used bi-directional rank-

ing loss to learn a common representation. Recently, adver-

sarial training based methods have also been proposed [22].

Text-based person search. Li et al. [11] proposed

GNA-RNN, which aims to find an affinity score between the

query text and each image in the gallery set. Image-sentence

affinity score is calculated using each word in the sentence

man,
black leather 

jacket, 
black pant, 
black shoe,

baseball cap, 
white shirt,

black 
sneaker,

blue jean,
hat

man,
black leather 

jacket, 
pair,

black pant,
black shoe,
young man,

baseball cap,
dark grey 

jacket,
white shirt,

black sneaker,
blue jean,

hat,
head

Extract noun
phrases 

from 
each 

description 
of the 

person id

Retain 
phrases 
whose 
global 

frequency  
above 

threshold

A man is wearing a 
black leather jacket 
and blue jeans. He 
has a hat on his 
head that is worn 
backwards

A young man with a 
backward baseball 
cap is wearing a 
dark grey jacket 
over a white shirt, 
black pants and 
black sneakers.

A man wearing a 
black leather jacket, 
a pair of black 
pants and a pair of 
black shoes.

Figure 1: Extracting attributes for a person class from text.

via attention. As an improvement over GNA-RNN, Chen et

al. [2] proposed a patch-wise word matching model to find

the image-word affinity. GLA [1] learns local association of

image regions and the noun phrases in the text via attention

and enforces the attented vector to predict the noun phrases.

Other methods such as [10, 35, 29] learn a joint embedding

of image-text. Unlike the CNN-RNN approaches for image-

text matching, a CNN-CNN architecture was proposed by

Zheng et al. [35] to learn the common representation. Re-

cently, Jing et al. [7] used pose as body part information

to guide visual feature extraction. Their model uses hard

attention to find the image regions most relevant to the cor-

responding text description.

Attribute recognition for person search. Attribute

recognition is a multi-label classification task, which aims

at selecting a relevant subset of attributes from a set of pre-

defined list of attributes. With the advent of deep-learning

based methods, many works have shown improvement in at-

tribute recognition [9, 36, 20, 13, 30]. In [12], Lin et al. pro-

vide manually annotated Market-1501 and DukeMTMC-

reID datasets.

3. Proposed method

3.1. Extraction of attributes

Text descriptions can be considered as a unstructured

form of annotation as compared to a manually assigned set

of attributes. In general, most attributes fall in the category

of noun phrases. Hence, as shown in Fig. 1, noun phrases

from the training set are extracted using NLTK [14]. For

each person class in the training data, we collect the candi-

date noun phrases from the descriptions associated with any

of its image. This was done to get the entire information of

the person. Next, phrases which have very low frequency in

the corpus are discarded, and the remaining ones are marked

as the attributes for the person class. This process gives us

a mapping from class identities in training set to the corre-

sponding attributes.
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Figure 2: In the proposed architecture, the features are extracted in a hierarchical manner. First, a semantics-driven attribute-

space is learnt which ensures that the attributes can be predicted from the embedding. Next, a discriminative, latent-space is

learnt using classification and triplet loss. Retrieval is done using similarity scores from both the spaces.

3.2. Proposed architecture and losses

We propose an architecture (Fig. 2(a)) such that two

levels of features are extracted from each image/text in-

put: a) da-dimensional semantics-driven features, b) dc-

dimensional class-driven features. We denote the space of

the semantics-driven features as ‘attribute-space’, while the

space of the class-information driven features as ‘latent-

space’. The feature extraction pipeline is as follows:

Visual features. A Mobilenet model [6], pretrained on Im-

ageNet [3] is used for encoding the images. For each image

Ik, the average-pooled output of Conv-12 is transformed

into a da-dimensional attribute-space embedding, aIk . Sim-

ilarly, the average-pooled output of Conv-13 is transformed

to a dc-dimensional latent-space representation, cIk .

Text features. A bi-directional LSTM (Bi-LSTM) [19] is

used for encoding the text. The forward and backward hid-

den states of each word are concatenated to get the word

representation. Finally, the word representations are max-

pooled to get the text embedding. We create two such Bi-

LSTMs with a shared word-embedding matrix. For each

text Tk, the output of the first Bi-LSTM is transformed to

a da-dimensional attribute-space representation, aTk
. Sim-

ilarly, output of the second Bi-LSTM is transformed into a

dc-dimensional latent-space representation, cTk
.

Next, we elaborate upon each of the proposed spaces: a)

Attribute-space and b) Latent-space.

3.2.1 Attribute Space

We introduce a semantics-driven space, named attribute-

space, to explicitly incorporate semantics during repre-

sentation learning and to learn transferable and humanly-

understandable features. In the attribute-space, we want to

learn a mapping from the embeddings to the corresponding

attributes. In addition, we want to minimize the image-text

modality gap and ensure that similarity in attribute-space

represents semantic similarity. Hence, we impose losses, as

shown in Fig. 2(b), to achieve each of these desired proper-

ties.

Multi-label classification. To incorporate semantics

during training, we enforce that the attributes relevant to

a datapoint are predictable from the its attribute-space rep-

resentation. For this, we employ ‘multi-label classification

loss’ (LMLC), to ensure that the predicted attributes match

the mined ground-truth attributes.

In general, attribute prediction is trained using binary cross-

entropy loss (BCE). Let xi be an image/text datapoint; that

is, it can replaced by Ii to denote the ith image, or Ti to de-

note the ith text. The attribute-space representation for xi is

denoted by axi
∈ R

da . Let V = {l1, . . . , l|V|} be the mined

vocabulary of attributes, Pi be the set of attributes marked

positive for xi, and Ni be the set V\Pi. We refer to at-

tributes in Pi as positive attributes for xi, and those in Ni as

negative attributes. A binary indicator vector bi ∈ {0, 1}|V|

is obtained for each xi, such that bik = 1 if lk ∈ Pi, else

it is 0. An attribute classifier matrix W ∈ R
|V|×da with

biases z ∈ R
|V| is constructed. For each attribute lj ∈ V ,

we use S(lj |xi) to denote the score of lj for given data-

point xi, and P (lj |xi) to denote the probability that lj is a

positive attribute for xi. Using these notations, the binary

cross-entropy loss for attribute prediction is given by:

LBCE(xi) = −
∑

lj∈Pi

logP (lj |xi)

−
∑

lj∈Ni

log(1− P (lj |xi)) (1)

P (lj |xi) = σ(S(lj |xi)) (2)

S(lj |xi) = βjScos(axi
,Wj) + zj (3)
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where σ is sigmoid activation, β ∈ R
|V| is a learnt scaling

vector and Scos denotes cosine similarity. However, this

loss is not directly usable due to two types of imbalances

that are observed in the attributes. First, there is an imbal-

ance in the frequency of different attributes. For instance,

attributes like ‘man’ or ‘woman’ are highly frequent, while

attributes like ‘red hat’ or ‘yellow shoe’ are rare. To ensure

that rare concepts are not ignored, we use weighted binary

cross entropy loss (Eq. 4) [9]. The weights w
p
lj

, wn
lj

are

computed such that w
p
lj

is high for rare attributes and wn
lj

is

high for frequent attributes. Second, there is an imbalance

across positive and negative attributes present on each data-

point. This is because the attribute vocabulary is large, but

on average, a small fraction of attributes is applicable on a

datapoint. Hence, there would be more loss on attributes

which are absent, than on attributes which are present. We

refer to the loss over negative attributes as ‘negative loss’

and loss over positive attributes as ‘positive loss’, and this

imbalance as the ‘positive-negative loss imbalance’. To ad-

dress this imbalance on each xi, we first compute the aver-

age negative loss and then scale it by α|Pi|, where |Pi| is

the cardinality of Pi and α > 0 is a hyper-parameter, denot-

ing the relative weight of ‘negative loss’ over the ‘positive

loss’. Thus, the multi-label classification after addressing

the imbalances is:

LMLC(xi) = −
∑

yj∈Pi

w
p
lj
logP (lj |xi)

−
α|Pi|

|Ni|

∑

yj∈Ni

wn
lj
log(1− P (lj |xi)) (4)

Reducing modality-gap. Cross-modal retrieval suffers

from modality gap between image and text spaces. To al-

leviate this, we propose to use Deep CORAL loss [21]

in the attribute-space. Deep CORAL loss aims at min-

imizing the distance between the second-order statistics

of source and target activations. Hence, this loss shall

help in improving the alignment of image and text fea-

tures. For an image/text datapoint xi, let the vector vxi
=

[S(l1|xi), . . . , S(l|V||xi)] ∈ R
|V| denote the per-attribute

score vector. We use vxi
as the activation on which Deep

CORAL loss is applied. Given a batch B = (I, T ), consist-

ing of n image-text pairs, {(I1, T1), . . . , (In, Tn)}, let vIj

be the activation for the image Ij and vTj
be the activation

for the text Tj . Let CI and CT denote the covariance matrix

of image activations and text activations respectively. Using

these notations, the Deep CORAL loss [21] is applied as:

Lcoral(I, T ) =
1

4|V|2
‖CI − CT ‖

2
F (5)

Semantics-based feature alignment. We want to arrange

the attribute-space such that neighbours are semantically

similar. This is a meaningful feature alignment for the task

m(xi |xa) = f( ϕ(xi, xa) )
ϕ(xi, xa) = ɣ
m(xi |xa) = mmax

Figure 3: Adaptive margin based on semantic similarity:

Blue line represents the margin applied as a function of se-

mantic similarity with anchor (Eq. 6).

of retrieval, as it will ensure that the images retrieved for

a query are semantically consistent to the required text de-

scription. It can be observed that class-level dissimilarity

doesn’t necessarily imply semantic dissimilarity. This is be-

cause, a pair of datapoints from different identities can have

similar descriptions, which means semantically they are not

very different. Hence, we need an alternative indicator for

semantic similarity.

Let bi be the ground-truth binary attribute vector for dat-

apoint xi. We use φ(xi, xj) = Scos(bi,bj) to denote the

semantic similarity for data-pair (xi, xj), where Scos rep-

resents cosine similarity. Note, since bi and bj are binary

vectors, φ ∈ [0, 1]. Having obtained a measure of seman-

tic similarity φ, we then modify triplet loss [17], such that

negatives are mined based on φ instead of class similarity.

That is, for an anchor xa, the candidate negative datapoints

are N (xa) = {xj : φ(xa, xj) < 1}. We further use an

adaptive margin to push different datapoints based on their

semantic dissimilarity with the anchor. Thus, given an an-

chor xa, and candidate negative datapoints x1, x2 such that

φ(xa, x1) > φ(xa, x2), we ensure that the margin imposed

on x1 is less than that imposed on x2. This is achieved by

setting the margin for each xi ∈ N (xa) as follows:

m(xi|xa) =

{
mmax, if φ(xi, xa) ≤ γ
mmax

1−γ
(1− φ(xi, xa)), otherwise

(6)

where γ is a threshold on φ, such that margin remains equal

to mmax even on decreasing φ. It is introduced because

below a certain degree of semantic similarity, all the points

are irrelevant to the query. Hence, it is sufficient to keep

them away from the query, and not needed to rank the entire

space. Next, for creating the triplets, when text Tk is the

anchor, we select the corresponding image Ik as the positive

and the negative Ĩsnk is mined as follows:

Ĩsnk = argmax
Ii∈N (Tk)

Sa(Ii, Tk) +m(Ii|Tk) (7)

Sa(Ii, Tk) = Scos(aIi ,aTk
) (8)
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where Sa(., .) is named as ‘attribute similarity’. Similarly,

when an image Ik is the anchor, we mine T̃ sn
k as the nega-

tive and Tk as the positive. We name this proposed adapta-
tion of triplet loss as ‘semantic triplet loss’, as the embed-
dings are arranged based on semantic similarity instead of
class membership. The semantic triplet loss is calculated as
follows, where [x]+ = max(x, 0):

LsTrip(I, T ) =
∑

Ik∈I

[m(T̃ sn
k |Ik) + Sa(Ik, T̃ sn

k )− Sa(Ik, Tk)]+

+
∑

Tk∈T

[m(Ĩsnk |Tk) + Sa(Tk, Ĩ
sn
k )− Sa(Tk, Ik)]+

(9)

Total attribute-space loss. For a mini-batch B = (I, T )
of n image-text pairs, the total loss for attribute-space is:

Lattr(I, T ) = LsTrip(I, T ) + λcLcoral(I, T )

+
λb

n

∑

i

(LMLC(Ii) + LMLC(Ti)) (10)

3.2.2 Latent Space

Unlike the attribute-space, which is driven by semantics, the

latent space is learnt using class-information to ensure that

embeddings of different identities are well-separated. Sim-

ilar to Zheng et al. [35], we utilize a combination of triplet

loss and classification loss to learn this space. In addition,

a novel feature norm-regularization is used, which further

helps in improving the cosine similarity between datapoints

of the same class. In the latent space, cIk is used for denot-

ing the latent-space embedding of kth image, and cTk
for

that of kth text.

Discriminative alignment of features. Triplet loss

[17, 25] is popularly used to learn a discriminative align-

ment of features. Further, to make the embeddings robust

to inter-class similarity and intra-class variance, hard neg-

ative and positive mining is used for creating the triplets

[31]. Hard negative is a datapoint from a different class

which is nearest to the anchor in the latent-space. Similarly,

hard positive is a datapoint from the same class which is

farthest from the anchor. For anchor text Tk, we use Ĩnk to

denote the hard negative image and Ĩ
p
k for hard positive im-

age. Finally, the triplet loss is applied on the latent-space as

follows, where Sl(., .) is named as ‘latent similarity’ and ∆
is the margin:

Ltrip(I, T ) =
∑

Ik∈I

[∆ + Sl(Ik, T̃n
k )− Sl(Ik, T̃

p
k )]+

+
∑

Tk∈T

[∆ + Sl(Tk, Ĩ
n
k )− Sl(Tk, Ĩ

p
k)]+ (11)

Sl(Ij , Tk) = Scos(cIj , cTk
) (12)

Identity-classification. We train an identity-classifier to

train the latent embeddings to be identity-preserving. A

common classifier, W ∈ R
dc×C , is used to help bridge the

modality gap between image and text features [35], where

C is total number of train identities. We denote the clas-

sifier column corresponding to the kth class by Wk. The

columns of the classifier are normalized, because otherwise,

a datapoint xi is classified into the class k which has max-

imum score of Wk
T
cxi

= ‖Wk‖2‖cxi
‖2Scos(cxi

,Wk).
However, this score should not depend upon ‖Wk‖2, as we

want to align vectors using cosine similarity. Post normal-

ization, cxi
will be classified to the class y with maximum

‖cxi
‖2Scos(cxi

,Wk). This is same as class ranked highest

based on Scos(cxi
,Wk), which justifies the need to nor-

malize the columns. Finally, the classification loss used is

as follows:

Lclass(xi) = − log(
exp(cTxi

Ŵy(xi))∑
j=1:C exp(cTxi

Ŵj)
) (13)

where y(xi) is the class of xi, Ŵj denotes the classifier

column Wj after normalization.

Feature norm-regularization. Since we use co-

sine similarity for ranking, the norm of the features

plays no role in retrieval. However, the score used for

classification,‖cxi
‖2Scos(Wy, cxi

), depends on ‖cxi
‖2. It

can be observed that after classifier columns have been nor-

malized, the Lclass can be minimized by increasing ‖cxi
‖2,

while keeping Scos(Wy, cxi
) constant. We prove this state-

ment in the supplementary. Hence, to focus the training

on improving cosine similarity, we add a regularization on

‖cxi
‖2.

Furthermore, a novel constraint to reduce the variance in the

norms of latent-space features is added. This is because, for

two vectors of the same class and pointing in the same di-

rection but having different norms, the loss will be different

[34]. This is undesirable because as per cosine similarity,

both the points are equivalent. To address this discrepancy

due to difference in norms, we penalize variance in ‖cxi
‖2,

thus ensuring that the model learns features of almost con-

stant norms. Formally, for a mini-batch B = (I, T ) of n

image-text pairs, let vnorm contain the norm of each latent-

space feature in the batch, σ2 be the variance of vnorm.

Then the loss is given as:

Lnorm−reg(I, T ) = λreg‖vnorm‖2 + λvarσ
2 (14)

Total latent-space loss. For a mini-batch B = (I, T ), of n

image-text pairs, the total loss for latent-space is given as:

Llatent(I, T ) = Ltrip(I, T )

+
1

n

∑

i

Lclass(Ii) + Lclass(Ti) (15)

Lreg−latent(I, T ) = Llatent + Lnorm−reg (16)
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CMAAM. We summarize the losses for our proposed

approach. We use CMAAM (Cross Modal Attribute-

Aided Matching) to denote the method which utilizes the

attribute-space losses (Eq. 10) and latent-space losses along

with norm-regularization (Eq. 16), and α-CMAAM for the

method which utilizes the attribute-space and latent-space

losses without norm-regularization (Eq. 15). The net loss

for our model is:

Lα−CMAAM = Lattr + λt(Llatent) (17)

LCMAAM = Lattr + λt(Lreg−latent) (18)

In both α-CMAAM and CMAAM, the retrieval results are

ranked by adding both latent similarity and attribute simi-

larity. This similarity measure is named as ‘latent+attribute

similarity’ and is given by:

Sla(Ii, Tk) = Sa(aIi ,aTk
) + Sl(cIi , cTk

) (19)

4. Experiments and Analysis

4.1. Experiment setup

Dataset. The dataset used is CUHK-PEDES [11], which

is the lone benchmark dataset available for the task. In total,

CUHK-PEDES is a collection of 5 person-reidentification

datasets and has 13,003 unique person identities. For each

person, there are on average 3.1 images. Each image has

been annotated by 2 sentence descriptions. The average

length of the sentences is 23.5 words. We follow the data

splitting scheme of [11] which uses 11,003 identities for

training, and 1,000 identities for validation and remaining

1,000 identities for testing.

Evaluation setup. Recall@K, for K=1, 5 and 10 is used

as the evaluation metric, where Recall@K defines the per-

centage of times the image of the correct person is returned

amongst the top-K results. During retrieval, for ranking

the gallery images with a query text, we explore three vari-

ants of similarities between image and text: a) latent-space

similarity (Eq. 12), b) Attribute similarity (Eq. 8) and c) La-

tent+Attribute similarity (Eq. 19). In the following section,

we use ‘L’, ‘A’ or ‘LA’ to denote latent similarity, attribute

similarity, latent+attribute similarity respectively.

Training procedure. The model is trained in a single-

stage, with both the image encoder and text encoder be-

ing trainable. We set the dimension of latent-space fea-

tures as 512 and of attribute-space features as 300. The

word embedding matrix and attribute embedding matrix are

randomly initialized. Training is done for 50 epochs using

batch size of 16 and Adam optimizer with learning rate of

2e-4. We used α = 2 in Eq.2. The hyperparameters are set

as: λa = 0.1, λb = 0.25, λc = 50, λreg = 1e-3, λvar = 1 and

λt = 3. For the losses LsTrip and Ltrip, we used γ = 0.5,

Method R@1 R@5 R@10

Prior works

GNA-RNN [11] 19.05 - 53.64

IATV [10] 25.94 - 60.49

PWM [2] 27.14 49.45 61.02

DPCE [35] 44.40 66.26 75.07

GLA [1] 43.58 66.93 76.26

CMPC+CMPM [29] 49.37 - 79.27

MCCL [26] 50.58 - 79.06

GALM [7] 54.12 75.45 82.97

Baselines

Class (Eq. 13) 21.31 41.28 51.09

Triplet (Eq. 11) 46.30 70.50 79.03

Class+Triplet (Eq. 15) 52.89 74.01 82.07

Proposed

α-CMAAM (Eq. 17) 55.13 76.14 83.77

CMAAM (Eq. 18) 56.68 77.18 84.86

Table 1: Text-to-image retrieval on CUHK-PEDES: We

compare our proposed method with three baselines as well

as the state-of-the-art methods. Our framework signifi-

cantly outperforms the rest on all metrics.

and mmax,∆ = 0.3. To create the attribute vocabulary, we

retain the noun phrases which contain maximum of 3 words

and whose frequency across the training text corpus is not

less than 40, yielding attribute vocabulary of size 4501.

Baselines. We first establish 3 baselines: a) only

Lclass (Class) (Eq. 13), b) only Ltrip (Triplet) (Eq. 11), c)

Lclass + Ltrip (Class+Triplet) (Eq. 15). We observe that

Class+Triplet is the best performing baseline, as shown in

Table 1.

4.2. Quantitative analysis

First we compare our results with prior works and state-

of-the-art methods in this domain. Next, to quantitatively

establish that learning an attribute-space helps, we study the

performance of attribute-space alone and then the interac-

tion of the attribute-space with each of the baselines.

Comparison with other methods. In Table 1, we com-

pare our method with the other related works on CUHK-

PEDES. It can be observed that our model outperforms each

of the works by good margin under all three metrics. We can

also see that considerable improvement is achieved on each

of our baselines.

Effect of addressing imbalance. To highlight the pres-

ence of imbalances in the attributes, we plot the attribute

statistics in Fig. 4. Fig. 4(a), shows that the frequency of

the attributes follow the Zipf’s law, which validates the im-

balance in frequency of attributes. Fig. 4(b) shows that on

average only 2-3% of the attributes are positively associ-

1More details on attribute extraction and weights in LMLC are given

in Supplementary.
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Figure 4: Attributes statistics: Fig. 4(a) shows the frequency

of each attribute, where attributes are ranked in descending

order of frequency. In Fig. 4(b), the bar chart shows that on

average, only 2-3% of attributes are positively associated to

a datapoint.

Baseline Balance-1 Balance-2 R@1 R@5 R@10

LBCE

✓ ✗ 11.29 27.66 36.74

✗ ✓ 23.15 45.18 56.82

✓ ✓ 24.14 47.60 57.83

Table 2: Abalation on LMLC (Eq. 4): Retrieval in attribute-

space using attribute-similarity. ‘Balance-1’ refers to effect

of using weighted binary-cross entropy, ‘Balance-2’ refers

to balancing done by α.

ated to a datapoint. This implies that for each datapoint,

the loss on the attributes which are absent is much more

than that on the attributes which are present. Next, the ab-

lations for addressing the frequency-based imbalance and

‘positive-negative loss imbalance’ have been presented in

Table 2. We observe that handling each imbalance shows

improvement, justifying that the need to address each of

them.

Retrieval using attribute-space only. We first inves-

tigate the utility of the novel attribute-space for text-based

person search, as shown in Table 3. We observe that R@1 of

24.14% is obtained from just attribute classification (Eq. 4).

Additional improvement is observed by using Lcoral. This

can be attributed to the better alignment in the modalities,

which in turn helps the attribute classifier. On adding the

semantic triplet loss (Eq. 9), we get 49.24% R@1 accuracy

in the attribute-space. These experiments validate our hy-

pothesis that an attributes-driven space can help in the task

of text-based person search.

Interaction of attribute-space with latent-space. We

next study whether learning an attribute-space is benefi-

cial in conjunction with a class-driven latent-space (Table

4). To evaluate this, we show interaction of attribute-space

with each of our baseline for latent-space, which are: a)

Lclass (Class), b) Ltrip (Triplet), and c) Lclass + Ltrip

(Class+Triplet).

When used along with id-classification, we observe that

through the simultaneous training of latent and attribute-

Baseline Lcoral LsTrip R@1 R@5 R@10

LMLC

✗ ✗ 24.14 47.60 57.83

✓ ✗ 35.23 58.56 68.97

✓ ✓ 49.24 72.04 79.92

Table 3: Abalation on Lattr (Eq. 10): Retrieval in attribute-

space using attribute-similarity. ‘Lcoral’ refers to (Eq. 5),

‘LsTrip’ refers to (Eq. 9)

Baseline LMLC Lcoral LsTrip Sim R@1 R@5 R@10

Class

✗ ✗ ✗ L 21.31 41.28 51.09

✓ ✗ ✗
L 26.97 47.77 57.62

LA 35.02 57.34 67.37

(Lclass) ✓ ✓ ✗
L 29.03 51.04 61.40

LA 41.13 64.00 73.57

✓ ✓ ✓
L 31.40 54.06 63.66

LA 49.11 70.78 79.30

Triplet

✗ ✗ ✗ L 46.30 70.50 79.03

✓ ✗ ✗
L 47.27 71.02 79.19

LA 48.44 70.78 79.50

(Ltrip) ✓ ✓ ✗
L 47.48 70.26 79.08

LA 49.42 71.56 79.78

✓ ✓ ✓
L 47.22 70.94 79.38

LA 49.38 72.64 80.86

Class+Triplet

✗ ✗ ✗ L 52.89 74.01 82.07

✓ ✗ ✗
L 52.00 74.61 82.26

LA 51.75 73.23 81.25

(Lclass + Ltrip) ✓ ✓ ✗
L 53.44 74.63 82.28

LA 53.56 74.32 82.18

✓ ✓ ✓
L 53.48 74.77 82.15

LA 55.13 76.14 83.77

Table 4: Abalation on baselines.‘Sim’ stands for similarity

score used for retrieval, which can be either: a) ‘L’ which

denotes ‘latent similarity’ (Eq. 12), or b) ‘LA’ which de-

notes ‘latent+attribute similarity’ (Eq. 19).

Method Baseline Lattr Norm Reg Var Sim R@1 R@5 R@10

-

Class ✗ ✓

✗ ✗

L

21.31 41.28 51.09

- ✓ ✗ 36.89 58.15 67.32

- ✓ ✓ 39.41 61.29 70.89

-

Class+Triplet ✗ ✓

✗ ✗

L

52.89 74.01 82.07

- ✓ ✗ 53.44 74.77 82.47

- ✓ ✓ 54.11 74.68 81.71

-

Class+Triplet ✓

✗ ✗ ✗

LA

55.52 76.32 83.85

- ✗ ✓ ✗ 55.47 76.62 83.64

α-CMAAM ✓ ✗ ✗ 55.13 76.14 83.77

- ✓ ✓ ✗ 56.30 77.57 84.58

CMAAM ✓ ✓ ✓ 56.68 77.18 84.86

Table 5: Effect of Lnorm−reg: ‘Var’ indicates inclusion of

variance minimization, ‘Reg’ indicates inclusion of feature

norm-regularization, as described in Eq. 14. ‘Norm’ indi-

cates normalization of columns of classifier.

space, the retrieval using L-similarity itself improves. This

is indicative of the benefits of attribute-space. Abalation

over the components of Lattr shows that each of them are

necessary. Best improvement is seen by training along Lattr

and using LA-similarity for retrieval.

In class-based triplet loss driven model, after training
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The woman is wearing a Gray shirt 
with black pants and light coloured 
shoes. She is carrying a light blue 
purse on her right shoulder. She is 
also carrying a light coloured 
umbrella.

The woman has short hair and is 
wearing a pink patterned shirt and 
dark pants, all while holding a blue 
bag and a pink bag.

 A man wearing a pink and white 
stripe shirt, a pair of blue shorts and a 
pair of brown sandals.

The man is wearing glasses, dark 
pants, dark jacket and dark shirt. He 
is wearing dark sneakers with white 
soles and accents.

 Top 6 retrieved results Text query

Figure 5: Top 6 retrieval results by CMAAM. Green high-

light represents successful match, while red represents in-

correct retrieval (best seen in color).

with Lattr, R@1 obtained using L-similarity itself improves

by about 1%. Further improvement is seen by using LA-

similarity for retrieval. Here too, abalation over each com-

ponent of Lattr justifies the need for each loss.

When the baseline is trained on both classification and

triplet losses, just LMLC does not show improvement.

A plausible reason is that the latent embeddings have

been trained in a highly discriminative manner, while the

attribute-space is comparatively less discriminative of iden-

tities. On training with Lattr, the retrieval based on LA-

similarity gives us R@1 of 55.13%, showing the benefits

of the attribute-space. We also show in Table 4 that all

the three losses are necessary to achieve this improvement.

A more comprehensive abalation is provided in the supple-

mentary. These experiments show that each loss involved in

Lattr is essential, and that training along with Lattr and us-

ing LA-similarity for retrieval brings improvement to each

baseline; hence, validating our hypothesis that semantics-

preserving losses can improve retrieval.

Effect of feature-norm regularization. We next study

the effect of Lnorm−reg (Eq. 14). It is observed that adding

norm-regularization helps in each baseline, as shown in (Ta-

ble 5). Furthermore, we show in Class+Triplet+Lattr, effect

of regularization is more when the columns of the classifier

are normalized, giving us R@1 accuracy of 56.30%. Ad-

ditional improvement is seen by adding variance reduction

constraint, yielding in state-of-art accuracy of 56.68%.

4.3. Qualitative analysis

In Fig. 5, we show examples of retrieval by our pro-

posed method, CMAAM using LA-similarity. In the first-

two rows, all the correct images obtain the top-4 ranking

(green highlight). Further, the negative retrievals (red high-

Attributes predicted from image Attributes predicted from text

Figure 6: Attribute prediction for unseen images and text:

We show all attributes predicted with probability ≥ 0.65 for

unseen images and their corresponding text.

light) that follow the correctly predicted images are seman-

tically similar to the query. In the third row, the correct pre-

diction comes at rank-3. Here too, the other images are to

a great extent similar to the query. The last row is a failure

case, in which none of the images is correct. The retrieved

images indeed exhibits some attributes, as mentioned in the

text description, e.g. dark clothings and spectacles. How-

ever, they are incorrect, as it can be observed that some im-

ages which contain ‘bag’ are appearing, and in one image

the person is wearing a ‘sweatshirt’ instead of ‘jacket’. In

Fig. 6, we further illustrate the attributes predicted for test

images and text queries. It can be observed that the attribute

predictions from a text and its corresponding image have

high consensus, and the model is able to provide reasonable

predictions. Hence, this shows that we are also able to get

good humanly-understandable features.

5. Conclusion

In this work, we proposed a novel method for text-based
person search. We devised a hierarchical architecture, such
that middle-level features are semantically arranged and
high-level features are discriminative. We performed exten-
sive experiments on CUHK-PEDES, and showed that ex-
plicitly ensuring that semantics are retained not only gave
us state-of-the-art performance of 56.68% Rank-1 accuracy,
but also provided humanly-understandable features.
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