
Fast Postprocessing for Difficult Discrete Energy Minimization Problems

Ijaz Akhter

KeepTruckin, Inc

ijaz.akhter@keeptruckin.com

Loong Fah Cheong

National University of Singapore

eleclf@nus.edu.sg

Richard Hartley

Australian National University

Richard.Hartley@anu.edu.au

Abstract

Despite the rapid progress in discrete energy minimiza-

tion, certain problems involving high connectivity and a

high number of labels are considered very hard but are

still very relevant in computer vision. We propose a post-

processing technique to improve the sub-optimal results of

the existing methods on such problems. Our core contri-

bution is a mapping between the binary min-cut problem

and finding the shortest path in a directed acyclic graph.

Using this mapping, we present an algorithm to find an ap-

proximate solution for the min-cut problem. We also extend

the same idea for multi-label factor-graphs in the form of

an iterative move-making algorithm. The proposed algo-

rithm is extremely fast, yet outperforms the existing tech-

niques in terms of accuracy as well as the computational

time. We demonstrate competitive or better results on prob-

lems where already high-quality work is done.

1. Introduction

Discrete energy minimization is an extensively studied

area in Computer Vision and related fields. In a recent com-

parative study, a few techniques have been even shown to

give globally optimal or near-optimal solutions on several

openGM benchmark datasets [9]. However, the problems

involving a high number of labels and high-connectivity

still remain quite difficult to solve. In addition, in prob-

lems where there were no unary terms, such as correlation-

clustering, only suboptimal results were obtained. The abil-

ity to find good solutions to these more challenging cases

is important for better modeling of many computer vision

problems, e.g., high connectivity is required to model occlu-

sion in stereo matching [30, 19] and in several other prob-

lems including [14, 15, 24, 34]. To improve the accuracy of

the solutions for such difficult problems, we propose a fast

post-processing algorithm, called ordercut. Ordercut is an

iterative move-making algorithm and given the solution of

a method as an initialization, it is guaranteed to give non-

increasing costs throughout its iterations. We first propose

an approximate solution for the binary min-cut problem for

an undirected graph, G and then extend it to general second-

order energy minimization problems.

Our core contribution is a mapping between the min-cut

problem and finding the shortest path in a directed acyclic

graph, D . D and G have the same set of nodes but dif-

ferent edge weights. Different orderings of the nodes in D

give different (possibly suboptimal) solutions for the min-

cut problem. Starting with an initial labeling, we aim for an

ordering such that the nodes that are likely to switch their la-

bels, should move towards the root and the rest away from

it, in the DAG. We show that if the weight of the shortest

path, in D, is negative then switching the labels of the nodes

in that path would decrease the cost of the cut by the weight

of the path. The key to the speedup of our approach is the

efficient ordering of the nodes and the computation of edge

weights in DAG. Finally, we extend order-cut by proposing

an iterative move-making algorithm for multi-label factor

graphs.

Other move-making algorithms can also be used as a

post-processing step to improve the labeling accuracy of

an inference technique. But they have their limitations,

as we show and discuss in the comparative evaluation.

Among these methods, the most prominent are max-flow

based move-making algorithms [4], which require sub-

modular sub-problems and the truncation technique only

works when only a small number of factors are non-sub-

modular [31]. The other methods are either slow, not very

accurate or work only on a subset of problems.

With the proposed algorithm as a postprocessing tech-

nique, we give competitive or outperforming results on

challenging problems, where a lot of high-quality previous

work has already been done. The proposed method im-

proves our ability to deal with the problems involving high

connectivity and a high number of labels. The proposed

method is sensitive towards its initialization and mainly

meant to be used as post-processing. But we show that even

without any good initialization, ordercut gives better results

than the previous method on several benchmark datasets in-

cluding notorious Chinese-Characters and modularity clus-

tering datasets from openGM [9].

3473

2. Related Work

Discrete energy minimization problems are in general

NP-hard. A few exceptions include e.g. when the underly-

ing graph structure obeys sub-modularity [16] or when the

graph structure is a tree [12]. A classical approach to get an

approximate solution is relaxing the integrality constraints

[29] (Also see [32]). There also exist specialized algorithms

for large-scale problems such as proximal [21, 25], sub-

gradient [17, 10] and quasi-Newton [8]. Although they pro-

vide certain convergence guarantees, the complexity of such

algorithms can still be very high.

To reduce the computational complexity, certain meth-

ods decompose the problem into several tractable sub-

problems and solve them by the means of Lagrange multi-

pliers. Examples of these methods include Sequential Tree-

Reweighted message passing TRWS [13], Max-Product

Linear Programming MPLP [5], Adaptive Diminishing

Smoothing Algorithm ADSAL [27] and min-sum diffusion

[33]. For binary problems, QPBO [23] can be used to effi-

ciently solve the problem. An advantage of linear program-

ming relaxation-based methods is that they normally pro-

vide certain bounds to the underlying energy minimization

problem. However, if the gap between the estimated energy

and the upper bound is large, the solution may be subopti-

mal. A recent comparative study [9] showed several such

examples, such as when the number of labels or the connec-

tivity is large or when the unary is not very discriminative.

The focus of our paper is to improve the accuracy of such

difficult problems through the proposed post-processing.

Similar to ours, there also exist several move mak-

ing algorithms. Most popular among them are max-flow

based methods, namely α−expansion that assumes that the

smoothness terms are metric, and αβ−swap that allows

the smoothness terms to violate the triangular inequality

[16]. A limitation of these methods is that they require

sub-modularity and are not applicable to general second-

order problems. Other examples include Iterated Condi-

tional Modes ICM, Lazy Flipper LF [1]. Both of these

methods can be quite slow for large connectivity and a large

number of labels. Recently a problem reduction technique

namely PCT [7], was proposed to exploit the structure in-

formation in the factor-graph, which allows them to solve

smaller subproblems. Their technique, however, is only ap-

plicable when the underlying problem is binary, or multi-

label potts, though multilabel reduction techniques have

also been explored [28]. FastPD [18] lies at the intersection

of move-making and dual decomposition-based methods.

This method also does not support general second-order

factor graphs. In contrast to these methods, the proposed

technique is applicable to general second-order graphs and

yet quite fast and accurate.

In contrast to all these methods, the global branch and

bound type methods such as CombiLP [26] and ILP [11]

may be quite slow or even intractable for large scale prob-

lems like the one we studied in this paper.

3. Approach

We propose an iterative move-making algorithm to solve

second order discrete energy minimization problems. We

first convert the binary min-cut problem in an undirected

graph, into the shortest-path finding problem in DAG as

shown in Fig. 1. The edge weights in DAG are dependent

on the ordering of nodes. Given initial labeling of the nodes,

we move the nodes, that are likely going to change their la-

bels, towards the root and the rest away from it. With the

proposed greedy ordering, we are able to efficiently find an

approximate solution to the binary min-cut problem. Then

we extend the proposed DAG based shortest path solution

for energy minimization in multi-label second-order factor

graphs.

3.1. Graphcut to Shortest Path in DAG Mapping

To define the undirected binary cut problem, we con-

sider a graph G consisting of V verticies with edge weights

given by a symmetric matrix W. Let there exist two addi-

tional nodes, source s and sink t, attached to all the nodes

V, with weights given by s and t respectively. We define

the Graph-Cut as a partition of V into two non-overlapping

sets S (source) and T (sink) such that S ∪ T = V and the

cost of the cut is defined as

C(S) =
∑

x∈T

s(x) +
∑

y∈S

t(y) +
∑

x∈T,y∈S

W(x, y). (1)

Given an initial cut (S,T), the proposed greedy algo-

rithm is to iteratively expand T or S, such that each ex-

pansion decreases the cost of the cut. The algorithm stops

when no more expansion move is found. With no initial la-

beling given, we set S = V if
∑

t(i) <
∑

s(i), otherwise

T = V. The following Lemma lays the foundation of the

proposed expansion move.

Lemma 3.1. Let (S,T) denotes a graph-cut with the cost

given by Eqn. 1. Let (S′,T′) denotes another cut, such that

a node i is moved from S to T. Then the cost of the new cut

is given by

C(S′) = C(S)+ s(i)− t(i)+
∑

y∈S

W(i, y)−
∑

x∈T

W(x, i).

(2)

The proof is given in Appendix. Lemma 3.1 can be used

to devise a greedy algorithm to find a set of nodes such that

by moving them from S to T (or the other way around) the

cost of an existing cut reduces. To exploit this observation

we convert the graph G into a DAG, D with the following

construction.

3474

s

t

1 2 i j s 2 i j 1

dsi
dij s 2 i j 1

Figure 1. A visualization of the mapping between the undirected graph (left), in which we need to find the min-cut, and the proposed DAG

(middle). We map the min-cut problem to the shortest pathfinding problem in DAG, with a sample shortest path tree shown on the right.

The DAG contains the same number of nodes as the original graph, with the first node as the source and no sink node. The edge weights in

DAG are estimated using Eqns. 3 and 4. These weights are dependent on the ordering of nodes and solving the min-cut problem requires

finding an order that gives the minimum shortest path among all possible orderings. With the proposed greedy ordering, given in Eqn. 6,

we are able to get an approximate solution for the min-cut problem.

The nodes in D would be s and S, where s is the source

node and s /∈ V. The ordered set Psi denotes the shortest

path between nodes s and i (excluding s, but including i)
with weight d(Psi). The first node in D would be s and

connected to all other nodes i ∈ S with weights,

dsi = s(i)− t(i)+
∑

x∈N(i)∩S

W(i, x)−
∑

x∈N(i)∩T

W(i, x),

(3)

where N(i) denotes the neighbours of i in G, excluding s.

The edge weights between i and j ∈ N(i) would be

dij = dsj − 2
∑

x∈Psi∩N(j)

W(x, j), (4)

where Psi ∩ N(j) is a regular set-intersection by treating

the shortest path Psi as an unordered set. As an example,

Psi in Fig. 1 just contains node i and not node 2, therefore,

here dij = dsj − 2 ∗ W(i, j). The dependence of Psi to

the estimation of the following edge weights dij in Eqn.

4 is important to understand and is the reason that different

orderings give different shortest paths. Without determining

this order, Eqns. 3 and 4 alone are not sufficient to construct

DAG. Depending upon the selected order of nodes in D,

nodes i and j, can also be disconnected in G. In this case,

we find dij by considering W(i, j) = 0. The following

theorem gives the relation between the shortest path and the

corresponding cut.

Theorem 3.2. Given an initial cut (S0,T0), the weight of

the path Psi and the cost of the cut, (S,T), where S =
S0 −Psi and T = T0 +Psi, are related by

C (S0 −Psi) = C (S0) + d (Psi) , (5)

where S0 − Psi is a regular set-difference by treating Psi

as an unordered set.

The proof of the theorem is given in Appendix. Once

the DAG is built and the shortest path from s to every other

node is found, we find the node im with the minimum dis-

tance d (Psim). If d (Psim) is negative, moving all the

nodes in Psim from S0 to T0 would reduce the cost of the

cut by d (Psim). Since the estimation of Psim is dependent

on the ordering of nodes in D and different orderings would

give different costs, the key challenge is to find an ordering

that minimizes the cost of the cut.

Without explicitly building a DAG, we keep the shortest

paths of every node in the form of a tree. We initialize the

shortest path tree, T̂ with the root node, s. We then add the

second node in T̂ with the minimum dsi. We denote î as the

last node added in the tree and N(T̂) as the nodes adjacent

to T̂. We incrementally grow T̂ by adding a node ĵ using

the following equation,

ĵ = argmin
j∈N(T̂)

(

d(Pŝi) + dîj

)

= argmin
j∈N(T̂)

dîj , (6)

where we use Equation 4 to find dîj . Since negative d(Psĵ)
corresponds to the nodes that would reduce the cut-cost by

an amount equal to d(Psĵ). The motivation behind Eqn. 6

is to move the nodes that are likely going to switch their la-

bels, towards the source. The shortest path Psĵ is found by

finding the parent node k̂ of ĵ using the following equation

and then attach the both in the current shortest path tree,

k̂ = argmin
k∈s∪î∪T̂∩N(ĵ)

(

d(Psk) + dkĵ

)

, (7)

where the intersection T̂∩N(ĵ) is taken w.r.t the nodes and

the union with s is to handle the case when d(Psĵ) = dsĵ
and the union with î is to handle when î /∈ N(ĵ). The above

construction only keeps the shortest path from s to every

other node and the full DAG is not constructed. Once the

tree is fully grown, we find the node im with the minimum

weight d(Psim). If that weight is negative, we move all the

3475

s

t

1 2 3 4 5

1 5 7 6 8
1
1

1

1
1

5

s1: 31 1
s2: 31 1

2

4

5

5

4
4

6

s3: 31 1
2

4
5

3
44

5
5

7

s4: 31 1
2

4 5
2

4
5

5

6

4
4

6

s5: 31 1
2

4 54
5

5

6

4 1-75 -23 1 9 92

Figure 2. An example to demonstrate the construction of the shortest paths tree given a graph shown on the left. The tree is built in five

steps using Eqns. 6 and 7. The detail construction is given in the text.

nodes in Psim , from the source to the sink. The difference

in the cut-cost due to the move would be d(Psim).
An example of the tree construction and the correspond-

ing estimation of edge weights are given in the example

shown in Fig. 2. The graph consists of nodes V =
{1, 2, 3, 4, 5} with unary and pairwise terms shown in the

graph. For tree construction, we assume an initial cut with

S0 = V and T0 = φ. Using Eqn. 3, edge weights ds1 to

ds5 are computed as 3, 7, 1, 6, 6 respectively. After setting

T̂ = s, the tree is constructed in the following five steps.

1) We attach node 3 to s because it has the minimum dsi
(See Fig. 2:1). This makes d(Ps3) = 1.

2) The next node is selected using Eqn. 6. We find d3j ,

using Eqn. 4, for j ∈ N(T̂), where T̂ = {s, 3} and

N(T̂) = {2, 4, 5}. This makes d32 = ds2 − 2W(3, 2) = 5,

d34 = ds4−2W(3, 4) = 4 and d35 = ds5−2W(3, 5) = 4.

Since d34 and d35 are the minimums, we arbitrarily select

node 4 (shown bold in Fig. 2:2). We find the parent of node

4, using Eqn. 7 as node 3 (T̂ ∩ N(4) = 3). Two possible

paths from s to node 4 are also shown with dotted line in

Fig. 2:2.

3) T̂ = {s, 3, 4} and N(T̂) = {2, 5}. Among these two

nodes, 2 is selected (shown bold in Fig. 2:3) using Eqn.

6, because d42 = ds2 − 2W(3, 2) − 2W(4, 2) = 3 and

d45 = ds5 − 2W(3, 5) = 4 and d42 is smaller. Considering

all the nodes in s ∪ 4 ∪ T̂ ∩N(2) = {s, 3, 4} in eqn. 7, the

path (s, 3, 2) gives the smallest distance, so we attach node

2 to 3.

4) T̂ = {s, 3, 4, 2} and N(T̂) = 5. d25 = ds5−2W(3, 5)−
2W(2, 5) = 2. Considering all the nodes in s ∪ 2 ∪ T̂ ∩
N(2) = {s, 3, 4, 2} in eqn. 7, the path (s, 3, 5) gives the

smallest distance, so we attach node 5 to 3.

5) d51 = ds1 − 2W(5, 1) = −7 and the path (s, 3, 5) gives

the smallest distance, so we attach node 1 to 5. Among all

the nodes, d(Ps1) is the minimum and negative (d(Ps1) =
−2). We switch the labels of the nodes present in the short-

est path, Ps1 = (3, 5, 1). This gives us S = {2, 4} and

T = {1, 3, 5}.

The construction of the shortest path tree in the above ex-

ample is quite inefficient and can be significantly speedup.

In particular, the edge weights used in Eqn. 7 have already

been computed when the earlier nodes were added in the

tree. Eqns. 6 and 7 can be solved efficiently with the help

of Priority Queue based indexing, as we show next. Finally,

the intersection Psi ∩ N(j) can also be found quite effi-

ciently, as we show in Sec. 3.3

3.2. Expansion Algorithm

To efficiently find node ĵ using Eqn. 6, we store the

neighbors of nodes currently added in the tree in the form

of an indexed priority queue. The queue sorts them based on

dîj and they are indexed by î. Therefore, if multiple edges

with the same ID are pushed, only the last one is retained.

Index priority queue gives the minimum weight edge in con-

stant time, whereas insert, delete and update operations are

done in logarithmic time. Algorithm 1 outlines the shortest

path tree construction algorithm. The efficient estimation of

edge weights and an early termination of the algorithm are

discussed in the next section. Once tree is constructed, we

find Psim if d(Psim) < 0, and relabel the corresponding

nodes. We rerun the algorithm with the updated labeling to

see if the cost can further be reduced, otherwise, we termi-

nate.

The input to the Algorithm 1 includes edge weights W in

G, current labels L, indexed priority queue Q, current path

weights for all the nodes d (initially these distances are set

to dsi), a boolean array vstd with value 1 at its index i if

the node i was visited before and have already changed its

label, the tree data structure, initialized with only the root

node. Given these as input, we set î equal to the root of the

tree. We pop the minimum weight edge on line 4, where ĵ
is the ending node of the edge and v̂ contains the weight and

the starting node as v̂ = {w, i}. If node ĵ is not in the tree

yet (lines 5-7), then we check, if we should attach ĵ to the

last visited node, î or to the starting node of the edge, v̂.i, in

the tree to get smaller d(Psĵ) (lines 8-13). This does not

exactly correspond to Eqn. 7, but it makes the algorithm

efficient at the cost of a little sub-optimality. We update d

3476

Algorithm 1: Shortest path tree construction

1 function construct-tree (W,L,Q,d,vstd, tree);
// Q contains a list of tree-edges,

sorted by their weights and

indexed by the edge’s ending

node, where Tree-Edge = {w, i}, and

w :weight & i : starting node of

the edge.

2 î = tree.root;
3 while !Q.isempty() do

4

[

ĵ, v̂
]

= Q.popmin();

5 if vstd[ĵ] then

6 continue;

7 end

8 d̂ = d[̂i] + v̂.w;
9 d = d[v̂.i] + v̂.w;

10 if d < d̂ then

11 î = v̂.i; d̂ = d;
12 end

13 tree.addedge(̂i, ĵ, d̂);

14 d[ĵ] = d̂;

15 vstd[ĵ] = 1;

16 for k ∈ N(ĵ) & vstd[k] = 0 do

17 find dĵk using Eqn. 4;

18 Q.push(k, {dĵk, ĵ});

19 end

20 î = ĵ;

21 end

with the estimated path-weight (line 14). Then we update

the weights, dĵk for k ∈ N(ĵ) (lines 16-19). If all the nodes

have been added to the tree, we terminate the while loop

(line 3).

Shortest path tree construction is used as a sub-routine

in the proposed expansion move algorithm 1. Given an ini-

tial labeling, we are expanding the set T (nodes with label

equal to zero). Swapping s with t and switching the corre-

sponding labels would make it work to expand S. Indexed

Priority Queue, Q for edges and vstd array, to keep track of

the nodes that have been added to the DAG, are initialized

on line 3-4. The vector d is initialized with edge weight

dsi (line 5). We push the first α percentiles of edges based

on their weights (dsi) in Q, where α = 2 (lines 6-8). The

while-loop (lines 10-31) runs until no shortest path with a

negative weight is found. We initialize a tree with the root

î (line 11). Then call the construct-tree function, with the

current set of variables, to get the shortest paths from the

source to every other node (line 12). After this, we find

the node im with the minimum weight (line 13). If dm is

Algorithm 2: Expansion move for T

1 function OC-Expand-Sink (s, t,W,L);

Input : // source, sink & pairwise

weights, & initial labeling

Output: L // L[i] = 0 if i ∈ S, & 1 if i ∈ T

2 n = length(s), α = 2
3 Initialize an Indexed Proirity Queue for Tree-Edges, Q

of capacity n.

4 ∀i ∈ {1, . . . , n},vstd[i] = (L[i] == 0) ? 0 : 1;
5 ∀i ∈ {1, . . . , n},d[i] = (L[i] == 0)?dsi : ∞;

// find dsi using Eq. 3

6 for i from the first α percentiles of D do

7 Q.push(i, {dsi, s});
8 end

9 î = s; // node to start tree growing

10 while true do

11 tree.root = î // create a tree with

root î
12 construct-tree(W,L,Q,d,vstd, tree);

13 find the node im with the min-weight dm in tree;

14 if dm < 0 then

15 find the path Psim connecting im and s;

16 for j ∈ {1, . . . , n} do

17 if j ∈ Psim then

18 L[j] = 1;

19 end

20 else

21 d[i] = dsi(using Eq. 3);

22 vstd[j] = 0;

23 end

24 end

25 delete tree;

26 î = im;
27 push the first α percentiles of d in Q;

28 end

29 else

30 break;

31 end

32 end

negative, we find the path Psim (lines 14-15) otherwise we

terminate the loop (line 30). We change the labels of nodes

in Psim from 0 to 1 (line 18). For the rest of the nodes, we

reestimate dsi according to the updated labeling and reset

them as unvisited (lines 21-22). We delete the current tree

and reset its root for the next iteration (lines 25-26). We also

push the first α percentiles of edges based on their weights

(dsi) in Q (line 27). Upon termination, the final labels are

stored in L.

3477

3.3. Optimization Details

In the previous section, the main problem in efficiently

finding the solution is, how to find the edge weights, dĵk
on line 17 of the Algorithm 1? Since we store the shortest

paths in the form a tree, finding Psĵ ∩N(k) in Eqn. 4, re-

quires traversing the whole path from s to ĵ and then taking

its intersection with N(k). To do this efficiently, we exploit

the fact that most of the time, a major part of the tree is a

linear link-list. We keep a record of that list in the form of a

binary occupancy array, of size n, with value 1, if the corre-

sponding node lies on the current path Psĵ and 0 otherwise.

Psĵ ∩ N(k) can now easily be found by checking if for a

node in N(k) the corresponding entry in the occupancy ar-

ray is 1 or not. On line 10 of the Algorithm 1, if d < d̂
then the occupancy array can be used to find Psĵ ∩ N(k),

otherwise, node ĵ would create a parallel edge in the tree,

and we need to update the occupancy array corresponding

to the path Psĵ . This, however, does not happen very often,

making the proposed algorithm quite fast.

Under the assumption that the most part of the tree is

a linear link-list, we can find the weights dĵk even more

efficiently. We need to initialize an array b, of size n with

zeros. With each addition of node ĵ, we can efficiently find

dĵk as following,

b[k] = b[k]− 2W(ĵ, k), (8)

dĵk = dsĵ + b[k], where k ∈ N(ĵ). (9)

In contrast to Eqn. 4, which requires running a loop over

the set of neighbours, Eqn. 9 contains just one subtraction

and one multiplication, and is more efficient. Whenever,

we add a parallel edge, we have to update the occupancy

array by considering the linear list between the source and

the parallel edge. We put the new nodes corresponding to

the parallel edge in a to-add list, and the nodes we have to

delete in a to-delete list. We update b as b[k] = b[k] −
2W(ĵ, k) for k ∈ to-add, and b[k] = b[k] + 2W(ĵ, k) for

k ∈ to-delete nodes.

Lastly, early termination of the proposed expansion al-

gorithm can also save the computation time. To do this, we

find the current minimum weight as d̂m and the correspond-

ing node, ĵm for each addition of a node in the tree. If for

the current node, d̂ − d̂m is greater than a threshold and a

certain number of nodes has been added in the tree since the

last ĵm, we terminate the tree construction.

3.4. Extension for Multilabel Problems

The energy minimization for the second order multi-

label problems is defined as,

x̂ = argmin
x

∑

i

Uxi
(i) +

∑

i,j∈N(i)

Wxi,xj
(i, j), (10)

where x denotes the set of labels for all the nodes, with

each xi assuming L possible labels, and U and W are the

unary and pairwise terms. Even though, they look differ-

ent, but equations 1 and 10 are quite similar. This can be

seen once we evaluate both the energy terms given a label-

ing of nodes. Hence, by generalizing equations 3 and 9,

the proposed expansion algorithm can be generalized to the

multi-label problem. Assuming initially xi = l′, the edge

weights dlsi can be found by noticing the difference in the

energy term, if xi is changed to l as follows,

dlsi = Ul(i)−Ul′(i)+
∑

j∈N(i)

(

Wlxj
(i, j)−Wl′xj

(i, j)
)

,

(11)

Similarly, if xj = l′′, for a node j ∈ N(i), then dlij can

also be found, by expanding the energy term in Eqn. 10 and

noticing the difference from the starting energy as follows,

b[j] = b[j] +Wll(i, j)−Wl′l(i, j)−Wll′′(i, j)

+Wl′l′′(i, j), (12)

dlij = dlsj + b[j], where j ∈ N(i). (13)

Hence the proposed expansion move can be extended for

multi-label problems. Specifically, the proposed full algo-

rithm is iterative, where within each iteration, we run our

expansion algorithm for each label. If no initial labeling is

given, we set the labels of all the nodes to,

l̂ = argmin
l

∑

i

Ul(i). (14)

4. Evaluation

To evaluate the proposed approach, we use the datasets

from OpenGM [9] benchmark that had a large gap between

the reported energy value and the corresponding lower

bound for the tested polyhedral methods. The large gap

indicates that the estimated labels may be suboptimal and

there is room for improvement. These datasets have either

a large number of labels or large connectivity or less infor-

mative unaries in comparison with the smoothness terms.

We compare the performance of Order-Cut (OC) against

previous move-making algorithms, namely iterative condi-

tional modes (ICM) [2], lazy flipper (LF) [1], local submod-

ular approximations (LSA-TR) [6], and Kernighan-Lin al-

gorithm (KLA) [20] and α-expansion[4]. We use OpenGM

library for ICM, LF, and KLA and MRF library for α-

expansion from [31]. For the rest of the methods, we use

their publicly available source codes.

In Tab. 1, we evaluate OC, ICM and LF as post-

processing algorithms, initialized on TRWS [13], BPS[22],

and α− expansion on mrf-stereo dataset. We report the av-

erage final energy value for each algorithm. This dataset has

grid4 connectivity with 16-60 labels and roughly 150,000

3478

TRWS BPS α−Exp

energy time(sec) energy time(sec) energy time(sec)

1659616.0 4.9 1793082.0 4.4 1606607.0 8.7

+OC 1617548.3 3.4 1744174.0 3.7 1606207.7 0.5

+ICM 1644089.7 9.2 1779120.0 9.0 1612515.0 8.8

+LF2 1630915.3 336.4 1768286.7 339.2 1610021.3 313.5
Table 1. mrf-stereo: This dataset has 3 instances with 16-60 labels and roughly 150,000 nodes. The large label space makes the problem

difficult. The first row gives the energy and computation time of TRWS, BPS, and α−Exp. The following rows are the results due to the

post-processing by OC, ICM, and LF2. OC performs better than ICM and LF2 while still is considerably faster.

TRWS BPS

energy time energy time

19088916 6.6 19090723 7.3

+OC 19088403 2.7 19090685 2.3

+ICM 19088445 17.7 19090691 17.8

+LF2 19088174 100 19090678 101
Table 2. brain-5mm (4 instances): The required rounding on the

continuous solution estimated using TRWS and BPS, in not trivial

in this dataset. This issue can be solved using the proposed method

very efficiently.

TRWS BPS

energy time(sec) energy time(sec)

-5228.2 8.3 -5768.9 9.7

+OC -5351.4 1.8 -5808.5 1.8
Table 3. protein-folding (21 instances): This dataset had 81-503

labels and high connectivity, making the problem very hard. But

still, OC significantly improves the results in less than 2 seconds,

on average.

nodes. We use a depth of two for LF. With a large number of

labels, higher depth LF becomes intractable. With all three

initializations, OC works better than ICM and LF, while is

considerably faster. For such problems where the connec-

tivity of nodes is small and the edge-weights are positive

and pairwise terms are more powerful than the unary terms,

OC as a stand-alone method performs worse than the con-

ventional state of the art methods like α−expansion, α− β
swap, TRWS, and BPS.

In Tab. 2, we report the same comparison on brain-5mm

dataset, containing 1413972 nodes with 3D-grid6 connec-

tivity and five labels. TRWS provides tighter bound in this

case, but rounding off the solution is non-trivial. LF with

depth 2 provides better results but is very slow. OC pro-

vides better results than ICM, while still being very fast.

The global optimal result reported in [9] on this dataset was

19087612.5 using Integer Multiway Cut [11].

In Tab. 3, we report results on the protein-folding

dataset, showing the effectiveness of the proposed method.

These results show that OC is more accurate and consider-

ably faster than ICM and LF.

In Tab. 4, we report results on the Brain-5mm dataset,

when no initialization was given. Since the edge weights

OC ICM LF2

energy 19127454 19272820 19140692

time(sec) 26.5 33.9 118.5
Table 4. brain-5mm: Comparative Evaluation of OC, ICM, and

LF, with no initialization.

OC LF1 KL

energy -26003.1 -25243.8 -25557.1

time(sec) 2.5 63.7 10.5
Table 5. knott-3d-300 (8 instances): This dataset had 3846-5896

nodes and the same number of labels and there are no unary terms,

making it hard to infer.

OC ICM LF2 LSA-TR

energy -49543.5 -49516.0 -49531.1 -49533.0

time(sec) 0.14 0.70 22.44 0.18
Table 6. dtf-chinesechar (100 instances): This is a binary problem

but each node has 27 neighbors. OC still outperforms others both

in terms of speed as well as accuracy.

here are positive, α-expansion can also be tested. However,

we could not run α-expansion in the MRF-library [31] be-

cause it does not support general sparsely connected fac-

tor graphs, (except grid-4 and grid 8 graphs in 2D). How-

ever, from Tab. 11 in [9], we can see that α-exp-VIEW on

this dataset is more accurate (19089080) but quite slow (100

seconds).

In Tabs. 5 and 6, we do the same comparison on knott-

3d-300 and dtf-chinesechar. Knott-3d-300 is a correla-

tion clustering1 dataset with 3846-5896 nodes and the same

number of labels and very high connectivity. With no unary

terms, polyhedral methods fail to give a tight poly-type re-

laxation and because of negative pairwise terms, max-flow

based methods are not applicable. Dtf-chinesechar is a bi-

nary label Chinese characters inpainting dataset with each

node having 27 neighbors. In Tab. 5, we use lazy flipper

with a depth of 1 because depth equal to 2 was intractable

because of large label space and connectivity. OC demon-

strates better accuracy, with a considerable speedup on both

brain-5mm and knott-3d-300 dataset. In Tab. 6, we also

1We did not use the other two correlation clustering dataset from

OpenGM, because they seem to be erroneous. With no negative pairwise

terms, the trivial solution of a single cluster becomes the optimal solution.

3479

compare our results with LSA-TR with Hamming distance

[6]. In their original paper, they report slightly better results

with Euclidean distance, but that requires initializing with

a 2D array of labels. Whereas in a more general scenario,

where nodes may not lie on a grid structure, only a 1D ini-

tialization can be provided. The best-reported results on this

dataset in [9] were −49550 using MaxCut Branch and Cut

method [3] though optimality was not guaranteed. OC gives

quite close results while being significantly faster.

Please note that in these tables, we do not compare

our results with PCT [7] as a postprocessing tool because

it only works with binary problems or multilabel potts,

which means it is only applicable on brain-5mm and dtf-

chinesechar. Comparing our results with Tab. 11 and 12

in [9], we see that TRWS-PCT results on brain-5mm are

slower (22 seconds vs. ours 10 seconds) but more accurate

(19087728 vs. ours 19088916), whereas for dtf-chinesechar

TRWS-PCT is worse than OC alone (−49497 vs. ours

−49543) and is also slower (4.4 seconds vs. ours 0.14 sec-

onds)

All these examples demonstrate the utility of the ordercut

as post-processing for second-order discrete energy mini-

mization problems when polyhedral relaxation-based meth-

ods fail to give a tight bound on the actual energy function.

5. Conclusion

We propose a fast postprocessing technique to improve

the suboptimal results of the existing methods on difficult

discrete energy minimization problems. We show that the

proposed technique is useful for problems with high con-

nectivity or a high number of labels. High connectivity

arises in many computer vision problems e.g. in occlusion

handling in stereo. Existing polyhedral techniques also fail

to give accurate results when local polytype relaxation is not

very tight, e.g. when there are no unary terms. For such sce-

narios, we provide a fast method to improve labeling accu-

racy. The proposed method, as a stand-alone method, per-

forms worse on problems where connectivity is small and

smoothness terms are more powerful than the unary terms.

Extending our approach for higher-order terms is a future

direction.

6. Acknowledgement

This work was supported by the Australian Re-

search Center grant ARCDP13 and Singapore PSF grant

1521200082.

7. Appendix

Proof. (Lemma 3.1) Using Equation 1 for the cut (S′,T′),

C(S′) =
∑

x∈T′

s(x) +
∑

y∈S′

t(y) +
∑

x∈T′,y∈S′

W(x, y).

Substituting S′ = S− i and T′ = T ∪ i,

C(S′) =
∑

x∈T

s(x) + s(i) +
∑

y∈S

t(y)− t(i)

+
∑

x∈T,y∈S

W(x, y) +
∑

y∈S

W(i, y)−
∑

x∈T

W(x, i)

= C(S) + s(i)− t(i) +
∑

y∈S

W(i, y)−
∑

x∈T

W(x, i)

Proof. (Theorem 3.2) We prove the theorem by induction.

To prove the base case, we need to show that if Psi =
i, then d(Psi) = dsi. Since W(i, j) = W(j, i) and

W(i, j) = 0 for j /∈ N(i), using Lemma 3.1, we can write

C(S0 − i) = C(S0) + s(i)− t(i) +
∑

x∈N(i)∩S0

W(i, x)

−
∑

x∈N(i)∩T0

W(i, x) = C(S0) + dsi.

This proves the base case. In the inductive step, we assume

that the Equation 5 is true for i < k, therefore,

C (S0 −Psi) = C (S0) + d (Psi) , ∀i < k (15)

Consider the node k attached to the nodes i < k with weight

given using Eqn. 4

dik = dsk − 2
∑

x∈Psi∩N(k)

W(x, k) = dsk − 2
∑

x∈Psi

W(x, k),

= s(k)− t(k) +
∑

x∈S0

W(k, x)−
∑

x∈T0

W(k, x)

− 2
∑

x∈Psi

W(x, k)

= s(k)− t(k) +
∑

y∈S0−Psi

W(k, y)−
∑

x∈T0+Psi

W(x, k).

According to the Lemma 3.1, if there exists a cut

(S0 −Psi,T0 +Psi) and a node k is moved from the

source to the sink then the cost of the new cut is given by

C (S0 − {Psi, k}) = C (S0 −Psi) + dik.

Using Equation 15,

C (S0 − {Psi, k}) = C (S0) + d (Psi) + dik. (16)

The term, d (Psi) + dik in the above equation, gives the

costs of different paths from s to k for different i <
k and the L.H.S is the corresponding cost for the cut

(S0 − {Psi, k},T0 + {Psi, k}). Among all these paths,

the shortest path Psk can be found by minimising the above

equation w.r.t i as follows,

C (S0 − {Psi, k}) = C (S0) + d (Psk) . (17)

3480

References

[1] B. Andres, J. H. Kappes, T. Beier, U. Köthe, and F. A. Ham-

precht. The lazy flipper: Efficient depth-limited exhaustive

search in discrete graphical models. In European Conference

on Computer Vision, pages 154–166. Springer, 2012.

[2] J. Besag. On the statistical analysis of dirty pictures. Journal

of the Royal Statistical Society: Series B (Methodological),

48(3):259–279, 1986.

[3] T. Bonato, M. Jünger, G. Reinelt, and G. Rinaldi. Lifting and

separation procedures for the cut polytope. Mathematical

Programming, 146(1-2):351–378, 2014.

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-

ergy minimization via graph cuts. In Proceedings of the

Seventh IEEE International Conference on Computer Vision,

volume 1, pages 377–384. IEEE, 1999.

[5] A. Globerson and T. S. Jaakkola. Fixing max-product: Con-

vergent message passing algorithms for map lp-relaxations.

Advances in neural information processing systems, pages

553–560, 2008.

[6] L. Gorelick, Y. Boykov, O. Veksler, I. B. Ayed, and A. De-

long. Local submodularization for binary pairwise energies.

IEEE transactions on pattern analysis and machine intelli-

gence, 39(10):1985–1999, 2017.

[7] J. Hendrik Kappes, M. Speth, G. Reinelt, and C. Schnorr. To-

wards efficient and exact map-inference for large scale dis-

crete computer vision problems via combinatorial optimiza-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1752–1758, 2013.

[8] H. Kannan, N. Komodakis, and N. Paragios. Newton-type

methods for inference in higher-order markov random fields.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 7300–7309, 2017.

[9] J. Kappes, B. Andres, F. Hamprecht, C. Schnorr, S. Nowozin,

D. Batra, S. Kim, B. Kausler, J. Lellmann, N. Komodakis,

et al. A comparative study of modern inference techniques

for discrete energy minimization problems. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 1328–1335, 2013.

[10] J. H. Kappes, B. Savchynskyy, and C. Schnörr. A bundle

approach to efficient map-inference by lagrangian relaxation.

In 2012 IEEE Conference on Computer Vision and Pattern

Recognition, pages 1688–1695. IEEE, 2012.

[11] J. H. Kappes, M. Speth, G. Reinelt, and C. Schnörr. Higher-

order segmentation via multicuts. Computer Vision and Im-

age Understanding, 143:104–119, 2016.

[12] D. Koller, N. Friedman, and F. Bach. Probabilistic graphical

models: principles and techniques. In Probabilistic graphi-

cal models: principles and techniques. MIT press, 2009.

[13] V. Kolmogorov. Convergent tree-reweighted message pass-

ing for energy minimization. IEEE transactions on pattern

analysis and machine intelligence, 28(10):1568–1583, 2006.

[14] V. Kolmogorov and C. Rother. Comparison of energy min-

imization algorithms for highly connected graphs. In Euro-

pean Conference on Computer Vision, pages 1–15. Springer,

2006.

[15] V. Kolmogorov and R. Zabih. Multi-camera scene recon-

struction via graph cuts. In European conference on com-

puter vision, pages 82–96. Springer, 2002.

[16] V. Kolmogorov and R. Zabih. What energy functions can

be minimizedvia graph cuts? IEEE Transactions on Pattern

Analysis & Machine Intelligence, (2):147–159, 2004.

[17] N. Komodakis, N. Paragios, and G. Tziritas. Mrf energy

minimization and beyond via dual decomposition. IEEE

transactions on pattern analysis and machine intelligence,

33(3):531–552, 2011.

[18] N. Komodakis and G. Tziritas. Approximate labeling via

graph cuts based on linear programming. IEEE transactions

on pattern analysis and machine intelligence, 29(8):1436–

1453, 2007.

[19] M. H. Lin and C. Tomasi. Surfaces with occlusions from lay-

ered stereo. In 2003 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2003. Proceed-

ings., volume 1, pages I–I. IEEE, 2003.

[20] S. Lin. An efficient heuristic algorithm for the traveling

salesman problem. Operations Research, 21:498–516, 1973.

[21] O. Meshi and A. Globerson. An alternating direction method

for dual map lp relaxation. In Joint European Conference on

Machine Learning and Knowledge Discovery in Databases,

pages 470–483. Springer, 2011.

[22] J. Pearl. Probabilistic reasoning in intelligent systems: net-

works of plausible inference. Elsevier, 2014.

[23] C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer.

Optimizing binary mrfs via extended roof duality. In 2007

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1–8. IEEE, 2007.

[24] C. Rother, S. Kumar, V. Kolmogorov, and A. Blake. Digital

tapestry [automatic image synthesis]. In 2005 IEEE Com-

puter Society Conference on Computer Vision and Pattern

Recognition (CVPR’05), volume 1, pages 589–596. IEEE,

2005.

[25] B. Savchynskyy, J. Kappes, S. Schmidt, and C. Schnörr. A

study of nesterov’s scheme for lagrangian decomposition and

map labeling. In CVPR 2011, pages 1817–1823. IEEE, 2011.

[26] B. Savchynskyy, J. H. Kappes, P. Swoboda, and C. Schnörr.

Global map-optimality by shrinking the combinatorial

search area with convex relaxation. In Advances in Neural

Information Processing Systems, pages 1950–1958, 2013.

[27] B. Savchynskyy, S. Schmidt, J. Kappes, and C. Schnörr.

Efficient mrf energy minimization via adaptive diminishing

smoothing. arXiv preprint arXiv:1210.4906, 2012.

[28] A. Shekhovtsov, P. Swoboda, and B. Savchynskyy. Maxi-

mum persistency via iterative relaxed inference with graphi-

cal models. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 521–529, 2015.

[29] M. I. Shlezinger. Syntactic analysis of two-dimensional vi-

sual signals in the presence of noise. In Cybernetics and

systems analysis, pages 612–628, 1976.

[30] J. Sun, N.-N. Zheng, and H.-Y. Shum. Stereo matching using

belief propagation. IEEE Transactions on Pattern Analysis

& Machine Intelligence, (7):787–800, 2003.

[31] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kol-

mogorov, A. Agarwala, M. Tappen, and C. Rother. A com-

parative study of energy minimization methods for markov

3481

random fields. In European conference on computer vision,

pages 16–29. Springer, 2006.

[32] T. Werner. A linear programming approach to max-sum

problem: A review. Research Reports of CMP, 2005.

[33] T. Werner and D. Pru?sa. The power of lp relaxation for map

inference. Advanced Structured Prediction, page 19, 2014.

[34] Z. Zabih. Computing visual correspondence with occlusions

using graph cuts. In Eighth IEEE International Conference

on Computer Vision, volume 2, pages 508–515, 2001.

3482

