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Abstract

Training a computer vision system to predict an object’s

pose is crucial to improving robotic manipulation, where

robots can easily locate and then grasp objects. Some of

the key challenges in pose estimation lie in obtaining la-

beled data and handling objects with symmetries. We ex-

plore both these problems of viewpoint estimation (object

3D orientation) by proposing a novel unsupervised train-

ing paradigm that only requires a 3D model of the object of

interest. We show that we can successfully train an orien-

tation detector, which simply consumes an RGB image, in

an adversarial training framework, where the discrimina-

tor learns to provide a learning signal to retrieve the object

orientation using a black-box non differentiable renderer. In

order to overcome this non differentiability, we introduce a

randomized sampling method to obtain training gradients.

To our knowledge this is the first time an adversarial frame-

work is employed to successfully train a viewpoint detec-

tor that can handle symmetric objects. Using this training

framework we show state of the art results on 3D orienta-

tion prediction on T-LESS [12], a challenging dataset for

texture-less and symmetric objects.

1. Introduction

One fundamental problem in any robotics system is

knowing the 3D position and orientation (azimuth, elevation

and cyclorotation) of objects in the scene, often referred to

as 6-DoF (degrees of freedom) pose. Recent advancements

in 2d object detection [21, 32] have enabled great progress

on estimating position. Recent detectors [43, 46, 38] have

been shown to be robust to various factors like occlusion,

lighting, clutter, etc. Although the problem of object orien-

tation, especially symmetric ones, has received less atten-

tion and remains an open challenge.

In general, objects can have varying and complex sym-

metries, depending on their shape, texture, and occlusions.

There exists three different types of symmetries, point

(sphere), axes (cylinder) and planes (cube) which can be

mixed or partial on any given object. For example, in the

case of an untextured mug, where there exists an axis of

Figure 1. Method overview: The generator, composed of both a

pose regressor and a non differentiable renderer, makes a 3D pose

prediction and renders the predetermined object at the predicted

pose. The discriminator scores how visually similar the poses de-

picted in the images are. This score is used as training signal for

the generator.

symmetry on the y-axis, e.g., looking up, has its symmetry

disappearing when there is a handle visible. One way to

handle object symmetries is to manually specify the sym-

metries and provide a corresponding training loss [42] or

via loss functions that ignore certain aspects of the visual

input, such as texture [46, 13]. The former method is labor

intensive and non-trivial as certain objects might have par-

tial symmetries. The latter approach has no guarantee that

the right representation will be learned.

In this paper we propose a novel approach to detect-

ing the orientation of symmetric objects without the need

for explicit symmetry labeling or loss specification. The

proposed method only needs a CAD 3d model of the ob-

ject of interest. The key idea behind our technique is to

train a viewpoint regressor using an adversarial training

paradigm where the adversarial component learns to pro-

vide a loss function that is consistent with an object’s sym-

metries. Similar to generative adversarial networks (GANs)
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[9], we train a viewpoint regressor coupled with a 3D ren-

derer, serving as generator1, simultaneously with a discrim-

inator. The discriminator’s goal is to challenge the genera-

tor to improve its predictions. Figure 1 shows an overview

of our presented method. The generator takes as input a

cropped image of the object of interest and returns a pre-

dicted pose. The discriminator takes as input two images,

the cropped image (the same input used for the generator)

and a 3D rendering of the object of interest in the orienta-

tion outputted by the generator. The discriminator scores

the image pair based on their visual similarity. Since gradi-

ents from the rendered images are unavailable, we propose

a randomized sampling method to jointly train the discrim-

inator and generator.

Following this section we discuss related work, provide

an overview of SymGAN, and experiments on 2D and 3D

objects. We summarize our contributions as follows: 1)

A new method for training a viewpoint estimator with any

kind of object symmetries (including objects without sym-

metries), 2) A sampling method for training a GAN when

gradients are not accessible, and 3) Experiments showing

state of the art results on the challenging T-LESS [12]

dataset.

2. Related Work

Object pose estimation is a popular problem in the

robotics and computer vision communities, and usually

consists of 3D localization and/or 3D orientation estimates

to form a full 6D pose. This problem has been addressed by

many works using classic computer vision algorithms, often

some form of template or feature matching [10, 28, 39, 45].

Other methods have applied classic machine learning tech-

niques [36, 2, 1]. Recently many works using deep learn-

ing and convolution neural networks (CNN) have been pro-

posed [17, 27, 46, 43, 22, 38]. A natural way to leverage

CNN is to directly regress to pose parameters, this approach

leverages data labels directly [2, 26, 46, 30, 19]. Other

methods have focused on regressing to cuboid vertexes pro-

jection which relies on using PnP [8] to retrieve the final

pose [38, 43, 17]. In this work we propose a system that

also directly regress to the orientation pose (quaternion).

Most of these methods need specific handling for sym-

metrical objects, such as special labelling [42]. Kehl et al.

added a classifier for pseudo symmetric objects, but it still

requires hand labeling information about the object [17].

Xiang et al. defined a loss function similar to the average

distance metric (ADI) [46]. This approach excels under ob-

jects with very symmetrical shape, the metric matches each

point on the 3D model in the predicted pose with the closest

point on from the ground truth pose. Hodan et al. showed

1Please note that we label our technique GAN as the regressor coupled

with the renderer act as a generator even though in spirit it is different than

the original definition introduced by Goodfellow et al.[9]

that using ADI can break under self-occlusion, when the

object looks symmetric in two views but some hidden part

has moved, e.g., the handle of a mug [13]. Moreover the

loss does not take into account visual queues, e.g., given

an object that is visually dissimilar, but the shape does not

change such as a texture cylinder would get label as sym-

metrical under the ADI loss. Sundermeyer et al. implicitly

learn a representation from rendered 3D model views using

an auto-encoder [35]. At test time a crop of the object is en-

coded and then compared via nearest neighbor search to a

dictionary of encoded poses to retrieve the final orientation.

Their method is limited by the discretization of the object

poses, whereas our is technically continuous and outputs a

pose directly.

Our work is also part of a larger effort to accomplish

training on simulated data while applying on real data, this

is also known as the reality gap problem. As such our

method is trained on rendered images while tested on real

images and only necessitates a 3D CAD model of the ob-

ject of interest, which is often easier to obtain than hand

labelling real-world training data. A popular approach to

solve this problem is the usage of domain randomization

[40, 41] as an inexpensive method to bridge that gap. This

method consists of training a model with extreme visual va-

riety so that when presented with a real-world image the

model treats it as another visual variation. It has been suc-

cessfully applied – though usually needing fine tuning or

more structure in the randomization to achieve state of the

art results [29, 43] – to car detection [41, 29], pose detection

[43, 35], vision based robotics manipulation [40, 42, 16],

robotics control [3, 37], and more.

Our proposed method leverages unsupervised adversar-

ial training democratized by the popularity of generative ad-

versarial network (GAN) [9]. The method was originally

used for image generation but since has been applied to

new domains such as imitation reinforcement learning [11].

Ganin et al. have used GANs to learn how a program, e.g.

a canvas stroke generator, can produce valid looking im-

ages of characters. Similar to our work, the gradient loss

cannot flow from the discriminator to the generator. They

approach this problem by leveraging reinforcement learn-

ing, e.g., maximizing the discriminator output as reward. In

this work we use GAN to retrieve the distribution of valid

orientation poses given an image as well as leveraging a

randomized sampling method to obtain signal from the dis-

criminator.

3. Method

In this work, our goal is to learn to predict the orienta-

tion, also known as viewpoint estimation of objects without

any manual symmetries labelling. Please note that we use

pose and orientation interchangeably. Figure 1 shows an

overview of our proposed method. First, a generator pro-
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Figure 2. Examples of ‘symmetric’ objects in the T-LESS[12]

dataset. The symmetries range from mostly identical (a), to shape

but not texture (b), to very small texture differences (c). This can

lead to ambiguities when trying to label data or train a pose esti-

mator.

cesses a cropped image of the object and predicts a quater-

nion pose. Next a discriminator takes as input two images,

the cropped image and a render of the generator’s output

pose, and outputs how likely the image’s poses are a match.

In this section we discuss the challenges with respect to

viewpoint estimation of symmetrical objects, and the major

components needed to train our orientation pose estimator,

SymGAN.

3.1. Symmetric Viewpoint Estimation

Estimating the pose of symmetrical object is a non trivial

problem, Figure 2 shows two different ground truth poses

(row wise) for some objects in T-LESS. In row a) the two

poses seem almost perfectly identical in appearance and

shape, and it is clear these poses should be labeled as sym-

metric. In row b) the two poses are clearly visually dis-

similar, but metrics like ADI [10] and Visible Surface Dis-

crepancy (VSD) [13], and loss functions based on them [46]

will treat these poses as symmetric since the shape is nearly

identical. In row c), the poses look almost identical, but a

human labeler can see a visual feature in the bottom right

corner of the first image (left) moved to the top right corner

in the second image (right). This leads to ambiguity in how

the symmetry should be labeled. Instead of having to make

decisions about what to label, or relying on the shape of 3D

models, we develop SymGAN to adaptively learn about vi-

sual object symmetries. As such our method is capable of

handling ambiguous ‘pseudo symmetries’ like like Figure 2

c).

3.2. Conditional Generative Adversary Network

SymGAN’s goal is to construct a generative model capa-

ble of predicting a target pose, p, conditioned by a target im-

age, xt. In order to predict such target we introduce a black

Figure 3. Overview for training the discriminator, training ‘fake’

images are generated using the generator and shown in dark or-

ange, whereas training ‘real’ images is depicted in dark blue.

box render, R, that accepts a pose and a CAD model2, this

function renders the CAD model with the input pose. For-

mally the task is equivalent to learning p|xt, i.e., where we

aim to output the right pose for a given image. The gen-

eration process is depicted in Figure 4 1), where a neural

network, G, takes as input an image, R(p), and ouptuts a

pose, pg , that is then rendered, R(pg).
In order to optimize this function (G) we employ an ad-

versarial network (D) [9]. As such a generator, G, aims to

maximally confuse a discriminator, D, which is trained to

discriminate between R(p) – images rendered from poses

taken from a training set – and render samples generated

by the generator output, denoted R(pg). In adversarial set-

ting, D is optimized to dissociate real from fake3 while G is

trained to foul D, e.g., producing real like images. As a re-

sult the output from the generator gradually becomes more

and more similar to the real pose, e.g., pg ≈ p. Such as

in [7] our method does not require aligned examples from

pg and p compared to other related works [15, 44, 31]. We

refer to ‘fake’ for images generated by G’s output and ‘real’

for images from p.

3.3. Training Procedure

We found that the objective introduced by the original

GAN [9] was hard to optimize and thus use L1 loss inspired

by Mao et al. [23] and metric learning information theory

[4], and coupled with zero-centered gradient penalty [33,

24]. In the following we denote the set of training poses as

pd.

Discriminator Here we define the discriminator loss as,

LD = Ep∼pd|xt [|D(R(p), xt)− a|]+
Ep∼pd|xt [|D(R(G(R(p))), xt)− b|] + Z

(1)

where Z is the zero-centered gradient penalty [34, 25], a is

the real data target label and b is the fake data target label.

2For reading ease we omit it from notation
3inputs generated by the generator
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Figure 4. Overview for training the generator 1) we generate a

pose, and 2) we sample multiple perturbed poses to find the most

valuable as target training.

Figure 3 presents an overview for training the discrimina-

tor, 1) We use the generator to output ‘fake’ images, this is

shown by the orange arrows. 2) We use a small perturbation

on a rendered sample pose as a ‘real’ set of images shown

by the blue arrows. The ‘real’ images show poses very close

to each other resulting in a low target label. When training

‘fake’ images, which should show very dissimilar poses, the

target is assigned a high value label.

Generator and gradient estimate We hope to maximize

the following loss for the generator,

LG = Ep∼pd|xt [|D(R(G(R(p))), xt)− c|] (2)

where c is the generator target. Since we cannot take the

gradient from R we introduce a sampling method for train-

ing. We first sample K noise vectors from some distribu-

tion, e.g., normal or uniform, giving us a set of noise vec-

tors {p1, p2, . . . , pK} = S. We use these noise vectors to

perturb the predicted poses and update the generator loss as

follows,

LG = Ep∼pd|xt [|G(R(p))− pq|]
pq = G(R(p)) + argminpi∈S [D(R(G(R(p)) + pi), xt)]

(3)

Figure 4 shows an overview of the training procedure,

1) generates a pose from an image, and 2) samples poses

around the predicted pose. We render all of these poses,

pair them with the original image, and get scores from the

discriminator. From these scores, the discriminator identi-

fies the pose that is the most visually similar to the original.

Finally we take that pose as a target for our generator and

take a gradient step with respect to that target.

Figure 5. Discriminator’s output during training for the solid white

2D square for a fixed input ((a) 20◦ and (b) 70◦) and a varying one

from 0
◦ to 360

◦.

3.4. Training Details

The adversarial training has been presented, but in prac-

tice training GANs can be unstable and challenging [24].

We now go into more details about how we implement a

more robust training procedure.

Discriminator In equation 1 the target values, a, for ‘real’

pairs are based on the distance between the poses of the im-

ages, allowing the discriminator to act as a metric function.

Larger perturbations lead to larger target values. For ‘fake’

pairs, target values b are sampled randomly as we cannot be

sure how different the poses are, due to unknown symme-

tries. In practice for a pair of real images a is scaled between

0 and 0.3 based on the perturbation, and b is sampled from

a random uniform distribution between 0.8 and 1. To help

avoid mode collapse while training, 20% of the time we re-

place the generator’s prediction with a random pose when

constructing fake pairs. This ensures the discriminator does

not over-fit to the generator’s output, which especially early

in training can have a narrow range.

Domain Randomization We apply many data augmenta-

tions to our training images to allow our model to general-

ize from synthetic only training data to real test images. We

take inspiration from Sundermeyer et al. [35] for the bulk of

our augmentation. We (1) render synthetic images with ran-

dom light position, intensity, and specular reflection, (2) in-

sert random backgrounds from Pascal VOC dataset [6], (3)

apply random masks to simulate occlusion, and (4) augment

the final image with random contrast, brightness, saturation

and hue shift.

4. Experiments on 2D Objects

We first apply our system to simple 2D shapes, where

we aim to predict a 1D pose that represents the rotation of

the shape in the image plane with respect to a fix coordinate

frame. This will allow us to better understand how Sym-

GAN learns during training and what its final output looks

like.
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4.1. Dataset & Training

We investigate 4 shapes: square, square with colored

corners, triangle, and decagon; each object have 2, 1, 3,

and 5 axes of symmetries respectively. In other words, we

can represent the same pose with 4 values, e.g., 0◦, 90◦,

180◦, and 270◦ give the same visual in plane rotation for

the square. The shapes are depicted in Figure 6’s left col-

umn. We generate the 32x32 images as follow: 1) we pick

a random scale (0.5 to 1), 2) place the object at a random

location, 3) apply a random rotation, 4) paste it on a black

background, and 5) add random blur.

The generator and discriminator both use the same ar-

chitecture. It is composed of 4 convolution layers, with 2

pooling layers, and followed by 1 fully connected layer. We

use the Adam optimizer [18] and train for 10,000 iterations

with batchsize of 64. Using the same architecture we also

trained a pose estimator that directly regress to the pose, we

use L2 as loss.

4.2. Results

In order to evaluate this pose predictor we count as suc-

cess a prediction if it is within one degree of the ground

truth while taking into account the symmetries. When

training our baseline on the simple square we obtain 10%

valid prediction while our proposed method achieves 98%.

Our method achieves 96%, 96%, and 82% for the textured

square, triangle, and decagon respectively. It is quite intu-

itive that directly regressing to a multimodal function using

L2 would perform worst than a tailored solution. Given the

low dimensionality of the in-plane rotation problem, we in-

vestigate the behaviour of both the discriminator and gener-

ator.

Discriminator Figure 5 shows the discriminator decision

boundary when fixing one image – left is set at 20◦ and

right is set at 70◦ – and varying the second image rotation

from 0◦ to 360◦ (x-axis). The blue line shows the discrimi-

nator’s output when comparing the input image to a differ-

ent pose, a low value represents a similar pose and a high

value a dissimilar one. This suggests that the discrimina-

tor has visually learned to distinguish between the different

symmetries. For example, on the left image all symmetric

poses to the input, ({20◦, 110◦, 200◦, 290◦}), are assigned

low scores, while other non-symmetric poses are assigned

high scores elsewhere. The generator’s output for these im-

ages, in the middle stages of training, is shown by a red

dashed line.

As previously described, when training on this input im-

age, we render the object at k random poses centered around

the predicted pose. We then pair them with the input image

and get difference scores from the discriminator. The pose

with the best (lowest) difference score from the discrimina-

Figure 6. Inputs (first column), outputs from generator (second

column), and outputs from discriminator (third column) for our

experiments on 2D shapes.

tor will be chosen as the training target for the generator.

As we can see in the graph, the pose with the best score

will be something greater than the generator’s output (180).

Through many training iterations the generator’s output will

slowly be pushed towards the valley at 200, where it will

eventually converge.

Generator The middle column in Figure 6 shows the gen-

erator’s output (y-axis) at each ground truth pose (x-axis)

after training has converged. A good way to interpret the

plot is by drawing a horizontal line across the plot. Take

the line y = 200 for the first row as example, it crosses the

model output at {20◦, 110◦, 200◦, 290◦}. This means that

for those four ground truth poses the model outputs 200,

which is the desired behavior, since all four poses are indis-

tinguishable from each other. The choice of 200 over any

other of the symmetry values is arbitrary and it is a result

from the model initialization.

The third column in Figure 6 describes the discrimina-

tor’s output as a heatmap for all possible pairs of poses, after

training has converged. For example, on the second image

on the first row, the point (x = 30, y = 50) corresponds

to the discriminator’s output for a pair of images where the

first image has the square at 30◦ and the second image at

50◦. To interpret this plot imagine, again, tracing a horizon-

tal (or vertical) line anywhere on the graph. As such, on the
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third image on the first row, if we were to trace y = 200
there would be 4 valleys where the discriminator’s score is

low, e.g., at {20, 110, 200, 290}, corresponding to the four

symmetries on the square. Everywhere else the discrimina-

tor’s score is high, as it has learned to assign high values to

visually dissimilar poses.

5. Experiments in 3D: T-LESS

We next test our system on the 3D orientation prediction

problem on the T-LESS dataset [12] from the SixD Pose

Challenge [14]. T-LESS consists of 30 object instances

most of which have limited texture and some level of sym-

metry. One challenge with any set of real objects is a vary-

ing level of symmetries, which can make manual labeling

of symmetries even more difficult and ambiguous.

We use the VSD [13] metric for evaluation, a metric

which is robust to shape (but not texture) symmetries and

is widely used by other works on this dataset.

5.1. Training Procedure

We make some changes in our training implementation

to be more practical for 3D objects. Each object has a re-

constructed 3D model available, from which we render our

training images. As discussed in Section 3, we have a ren-

derer in our training loop, generating training images on the

fly. While this is still possible in the 3D setting, we found

pre-rendering training images improved training speed and

did not greatly reduce performance. As such, we render

10,000 images per object each with a random pose on a

black background, randomly changing the lighting location

and intensity per our domain randomization approach.

To simulate the renderer during training, we build a near-

est neighbor graph based on each training image’s ground

truth pose. Then, when we need to generate an image with

pose p, we simply query for the training image that is the

nearest neighbor to p. When we need to sample K im-

ages around some pose p, we simply query for the N , where

N > K, nearest neighbors of p and sample K of those.

For example, when training the discriminator with a pair

of ‘real’ images, we first pick a random pose, p, and get the

training image with the closest pose to p. Follow we query

N = 10 nearest training images to p, and choose one of

them randomly. This gives us a pair of images in which the

object has similar pose but not exact. On the other hand,

for a pair of ‘fake’ images, it is important that we sample

far away enough from the generator’s output to explore the

possible pose space, but not so far away that the sampled

poses are just completely random. As such, using an output

pose from the generator, p, we choose to sample K = 10
images randomly from the N = 200 nearest neighbors of

p. After we fetch the rendered images using the nearest

neighbor graph, we apply our other data augmentations in

the training loop.

Please note that this process does not limit what the dis-

criminator sees as ‘real’ pairs. Consider two poses that are

far apart in pose space, (p1, p2). If (p1, p2) are visually am-

biguous, (p1 + ǫ, p2) are also visually ambiguous for some

small enough ǫ. Therefore (p1, p1 + ǫ) provides similar vi-

sual information as (p1, p2). (p1, p1 + ǫ) are close in pose

space and will be used as a ‘real’ pair in training, effectively

including (p1, p2) as a ‘real’ pair in training. If (p1, p2)
are not visually ambiguous, then it is correct to not include

them as a ‘real’ pair during training.

5.2. Model Details

Our generator takes as input a 128x128 crop of an ob-

ject. It first passes the image through a feature extractor

based on the FLowNetSimple architecture [5], followed by

three fully connected layers to predict the objects pose as

a quaternion. The discriminator also uses the same archi-

tecture, but only outputs a single score. We train both us-

ing Adam with a learning rate of 1e−4 and batchsize of 32.

We stop training when we see performance converge on the

training data for the object of interest, usually within 50,000

to 100,000 update iterations. We trained three models per

object and keep the one that performed best on the training

data to evaluate on the test data.

5.3. Evaluation

In order to evaluate our method on T-LESS we use

Visible Surface Discrepancy (VSD) as it is an ambiguity-

invariant pose error function that is determined by the dis-

tance between the estimated and ground truth visible object

depth surfaces. We compare our method to a baseline that

we trained to directly regress to the object pose and the Aug-

mented Auto Encoder (AAE) from [35]. The former uses

the same architecture as the pose predictor in SymGAN but

it is trained using annotated real poses from T-LESS and

does not have a discriminator or renderer in the loop. The

latter is a method trained for 3D orientation retrieval using

an auto encoder method.

Our focus is only on the 3D orientation portion of the 6D

pose challenge, and so during evaluation we combine our

3D orientation prediction with the ground truth 3D trans-

lation. As input to our network, we use the ground truth

bounding boxes, and when multiple instances of one object

are present in one scene we choose the instance with the

highest visibility similar to [35]. We omit showing refined

poses using methods such as ICP as we want to focus on the

RGB component of our system.

5.4. Results

Figure 9 shows qualitative results randomly selected

from T-LESS scene 1, it depicts 4 objects: 02, 25, 29, and 30

shown in blue, yellow, orange and purple respectively. As

in the SIXD challenge, we report the recall of correct 6D
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Table 1. Results on T-LESS Dataset T-LESS: Object recall for

errvsd < 0.3 on all Primesense test scenes. The italic number

depict the objects with axes of symmetries.

object baseline Sundermeyer [35] SymGAN (ours)

1 65.0 12.33 75.5

2 80.2 11.23 88.0

3 85.2 13.11 84.0

4 62.2 12.71 66.2

5 58.5 66.70 73.0

6 65.5 52.30 65.1

7 11.8 36.58 22.2

8 4.6 22.05 42.0

9 20.6 46.49 47.4

10 3.6 14.31 13.3

11 66.3 15.01 66.0

12 40.3 31.34 49.4

13 69.0 13.60 66.6

14 36.0 45.32 34.3

15 54.0 50.00 58.2

16 78.0 36.09 80.6

17 68.0 81.11 54.3

18 67.0 52.62 63.0

19 23.5 50.75 28.5

20 7.8 37.75 12.4

21 35.0 50.89 33.3

22 11.0 47.60 9.6

23 15.0 35.18 17.0

24.0 67.75 11.24 68.2

25 60.5 37.12 35.0

26 49.0 28.33 43.3

27 10.0 21.86 40.0

28 43.4 42.58 54.2

29 23.0 57.01 38.5

30.0 90.3 70.42 92.0

avg. 45.74 36.79 50.74

object poses at errvsd < 0.3 with tolerance set at 20 mm

and objects with visibility greater than 10% [14]. When

comparing our method to similar RGB based method, we

can see that our method, with 50.74 avg., learns a better

orientation retrieval than previous work4 with 36.79 avg. It

is also interesting to point out that our baseline, with 45.74

avg. is also stronger.

In Table 1 we have also identified, using italic, the ob-

jects that have axes of symmetries, like object 02 (blue) in

Figure 9. If we isolate these and compute their vsd we ob-

tain 67.60 avg. and 15.8 std. which is better results com-

pared to objects with plane symmetries (non-italic objects)

with 35.94 avg. and 18.6 std. When computed on [35] we

4[35] was state of the art on T-LESS when this paper was written

(a) Object 01 (b) Object 05

(c) Object 08 (d) Object 09
Figure 7. How different models’ (SymGAN, our baseline) outputs

change as an object is rotated in a plane (approximately). The

arrow depicts the orientation of the example image in the center,

the object is then rotated 360 degrees around an axis coming out

of the page, and the models’ 3D pose outputs are project to a plane

and plotted. GT means ground truth pose.

do not obtain any significant distinction where there method

got 32.58 avg. and 23.9 std., and 40.47 avg. and 14.1 std.

for axes and planes symmetries respectively.

This might suggests multiple hypothesis: 1) objects with

axes of symmetries are easier to learn as it reduces the num-

ber of dimensions when trained with a discriminator, and

2) The discriminator might suffer more of mode collapse

on objects with planes of symmetries. Nonetheless, Sym-

GAN learns based on visual appearance of the objects, di-

rectly from RGB images, and so does not suffer from rely-

ing solely on shape like previous methods.

5.5. Results on Symmetric Views

In this subsection we investigate SymGAN performance

on some objects with respect to a specific axis of symmetry.

We choose four objects from the TLESS dataset, for each

object we select a set of views from the test set such that the

views cover a 360 degree rotation around a top down view

of the object. This is visualized in Figure 7, at the center

of each plot there is an image of the object, the selected

test views correspond roughly to rotating that image around

an axis coming out of the page. In practice the camera in

TLESS is not directly above the objects, but it is very close

to it. See the supplementary material for more examples of

the views used for this experiment.

We project the 3D predict poses (red and blue for Sym-

GAN and baseline respectively), and the ground truth pose

(green), to a 2D plane for easy visualization. The accuracy

(object recall for errvsd < 0.3) results of the two methods
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Table 2. Object recall for errvsd < 0.3 on restricted set of views

from the test set. The objects and selected views are exactly those

visualized in Figure 7. SymGAN is able to outperform the direct

regression baseline on these symmetric views by a greater mar-

gin than on all test views, illustrating SymGan’s effectiveness on

symmetric objects.

Object SymGAN Baseline

01 93.0 45.8

05 90.2 40.2

08 97.2 15.2

09 83.3 6.9

Figure 8. Visualization of discriminator outputs on pairs of images

from the restricted testing used in Tabel 2. Similar to the plots in

Figure 6, column 3. Object 01’s response is smooth and contains

low values indicating most of the views are symmetric. Object 05’s

response shows a clear pattern indication a 180 degree symmetry,

a noisier version of the square with colored corners from Figure 6.

on these restricted testing sets are shown in Table 2. No-

tice that SymGAN is able to achieve over 83% on all the

objects, plots (b) (c) and (d) in Figure 7 show rectangular

type objects, each with a symmetry at 180 degrees meaning

half of the poses are redundant. SymGAN is able to learn

this distribution, and it’s outputs only cover about half of

the ground pose space. The baseline is not able to learn the

object’s symmetries and outputs a wide range of (often in-

correct) poses. Plot (a) shows an object that is symmetrical

in every view of this restricted test set. Ideally SymGAN

would output a single point, but its output here is fairly re-

stricted.

It should be noted that while none of the objects are ex-

actly symmetric due to some very small features they are

generally considered symmetric in the literature, and are

symmetric with respect to our model’s discriminablilty. As

stated in section 3, our method will adapt with the capacity

of the model used.

Overall we can conclude that SymGAN does indeed

learn objects’ symmetries. The performance gain over the

baseline on the restricted test set is larger than the perfor-

mance gain over the entire test set, further validating Sym-

GANs advantage on symmetric views.

6. Discussion & Conclusion

Leveraging adversarial training we have shown that it

is possible to train a state of art viewpoint (3D orienta-

Figure 9. Qualitative results of our viewpoint predictor on scene

1 from T-LESS dataset [12]. The scene is composed of object

id. 02, 25, 29, and 30 shown in blue, yellow, orange and purple

respectively.

tion) regressor for untextured symmetrical objects without

any hand labelling of object symmetries (or poses). Sym-

GAN does not estimate the full multi-modal distribution

over symmetric poses, but is able to improve the point es-

timate state-of-the-art in 3D orientation. As our method

only requires a 3D model and involves a non differentiable

black box, we introduced a sampling procedure for retriev-

ing training gradients.

Moreover, we are also interested in learning the full 6D

pose using SymGAN, investigating best GAN losses as a

function of the type of symmetries, and using a differen-

tiable renderer [20].
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