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Abstract

Deep neural network-based methods have been proved

to achieve outstanding performance on object detection and

classification tasks. Despite the significant performance im-

provement using the deep structures, they still require pro-

hibitive runtime to process images and maintain the highest

possible performance for real-time applications. Observ-

ing the phenomenon that human visual system (HVS) re-

lies heavily on the temporal dependencies among frames

from the visual input to conduct recognition efficiently,

we propose a novel framework dubbed as TKD: temporal

knowledge distillation. This framework distills the temporal

knowledge from a heavy neural network-based model over

selected video frames (the perception of the moments) to a

light-weight model. To enable the distillation, we put for-

ward two novel procedures: 1) a Long-short Term Memory

(LSTM)-based key frame selection method; and 2) a novel

teacher-bounded loss design. To validate our approach, we

conduct comprehensive empirical evaluations using differ-

ent object detection methods over multiple datasets includ-

ing Youtube-Objects and Hollywood scene dataset. Our re-

sults show consistent improvement in accuracy-speed trad-

offs for object detection over the frames of the dynamic

scene, compared to other modern object recognition meth-

ods. It can maintain the desired accuracy with the through-

put of around 220 images per second. Implementation:

https://github.com/mfarhadi/TKD-Cloud.

1. Introduction

Object detection plays a critical role in a variety of mo-

bile robot tasks such as obstacle avoidance [3, 44], detec-

tion and tracking [2] and object searching [46, 45]. Dur-

ing the last decade, we have witnessed the great success

of Convolutional Neural Networks (CNNs)-based meth-

ods in the object detection task. This success has led re-

searchers to explore deeper models such as RetinaNet [23]

or Faster-RCNN [35], which yield high recognition accu-

racy. The “secret” sauce behind the success of these deeper

and deeper CNNs models is the stacking of repetitive layers

Figure 1: An illustration of our TKD model’s actual per-

formance: F-1 score distribution over example object cate-

gories in different environments using TKD.

and increasing the number of model parameters [5]. This

practice becomes possible while the applications are run-

ning on infrastructures with high processing capabilities.

However, the disadvantages of this practice are obvi-

ous and the high performance is achieved by the significant

growth of the model complexity: stacking up layers and in-

creasing the model parameters which are computationally

expensive and also increase the inference time significantly.

Hence, these models are not suitable for real-time and em-

bedded visual processing systems, and thus impede their

deployment in the era of intelligent robots and autonomous

vehicles. The same concerns also lie in the energy conser-

vation and computation limits, since deep models require

a large number of matrix multiplications, which are time-

consuming and energy-demanding for mobile applications.

The aforementioned concerns trigger various ap-

proaches, such as using the alignment of memory and SIMD

(Single Instruction, Multiple Data) operations to boost ma-

trix operations [14]. More recently, studies [5] and [18] pro-

posed transferring the knowledge of deep models to shal-

low models while maintaining the recognition accuracy. Al-

though these approaches do improve the model efficiency,

they ignore the temporal dependencies among the frames

from dynamic scenes, which is one of the critical capa-

bilities to maintain high recognition accuracy while being
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energy-aware.

The motivation for our TKD model comes from the vi-

sual adaptation phenomenon observed in the Human Vi-

sual Systems (HVS). Visual adaption involves temporary

changes in the human perception system when exposed to

intense or new stimulus and by the lingering aftereffects

when the stimulus is removed [42]. Other studies from [42]

show that the visual system adapts to the changes in the

environment and this adjustment can happen in a few mil-

liseconds. More specifically, a study from [7] reveals that

the face recognition process happens at a higher level of

cognition, and later at the stage of visual encoding, we ob-

serve that the sensory systems adapt itself to the prevailing

environment. This shows that HVS relies heavily on the

prior estimation of the objects’ appearance distribution to

improve the perception capability at the current time-stamp.

Moreover, the adaptation happens both in the “low” and

“high” level visual features. The human visual system

adapts to the distribution of “low-level” visual features such

as color, motion, and texture, as well as the “high-level” vi-

sual features such as face classification including identity,

gender, expression, or ethnicity [42]. This adaptation can

be both short-term and long-term. For instance, our percep-

tion system adapts itself to the general visual features of the

environment which we are living in for a long time such as

faces and colors (like training a model). Also, it can adapt

itself dynamically when the environment changes, for ex-

ample, moving from the indoor environment to the outdoor

[42] (like adapting a shallow model). This adaptation capa-

bility is essential for our HVS to perform recognition well

and efficient, with low energy consumption.

Inspired by the aforementioned findings, we design our

TKD framework that utilizes the knowledge distillation

techniques. It transfers temporal knowledge from the heavy

model to a light model to boost visual processing efficiency

while maintaining the heavy model’s (a.k.a., oracle model)

performance. Figure 1 illustrates the overall goal of this

work. In this figure, we show how TKD improves recog-

nition accuracy over different scenes, compared to the ora-

cle model which we assume to be a perfect model. Also,

we show the baseline model which is a tiny model with

low accuracy compared to oracle recognition due to a much

lower number of parameters. TKD achieves higher accu-

racy by adapting itself to the observed environment. In the

case of an indoor scene, the TKD recognition accuracy im-

proves significantly over objects which are more probable

to be observed inside a building. In the outdoor case, TKD

recognition accuracy improves over the objects such as a

car, bus, and truck which are more probable to be observed

outside. For a similar amount of model parameters as the

baseline tiny model, the TKD will achieve much better per-

formance over the more probable objects by dynamically

learning from the oracle model.

To summarize our contributions: 1) we propose an end-

to-end trainable framework to transfer the temporal knowl-

edge (a.k.a., the perception of the moment) of the oracle

model to the student model; 2) we propose a novel teacher-

bonded loss for knowledge distillation which has a sim-

ple structure and performs inferences briskly; and 3) we

propose an efficient method to select key frames from the

dynamic scene, that indicate the right timing to train stu-

dent model and to improve the detection accuracy. We de-

sign and conduct empirical experiments on both the pub-

lic datasets (the Youtube Object dataset and the Hollywood

Scene dataset) as well as on two long videos with multiple

scene changes, which validate each of the aforementioned

novel design choices, by observing a fast object recognition

performance while maintaining high detection accuracy.

2. Related Work

Visual recognition systems, ranging from object recogni-

tion [23], action recognition [22], to scene recognition [47]

have gained attention in recent years. Significant improve-

ments in recognition accuracy have resulted in economic

and societal benefits in AI applications such as autonomous

vehicles [20, 21], and IoT systems [39, 40].

Object Detection: Object detection methods based on Con-

volutional Neural Networks (CNNs) have shown promis-

ing results over the past years. There are two main types

of object recognition systems which are based on CNNs,

one-stage, and two-stage. In one-stage methods, we clas-

sify and localize objects in one-stage. Images, when for-

warded through the network produce a single output which

is then used to classify or localize objects. Some exam-

ples of one-stage methods are Yolo [34], RetinaNet [23]

and DSSD [13]. These models are faster compared to other

methods due to ruining in a single stage. The second types

of models are two-stage methods in which classification and

localization happen as two different stages, using classifi-

cation networks and region proposal networks respectively.

Two famous two-stage models are FasterRCNN [35], R-

FCN [9]. These models reach to higher performance with

high intersection over union (IOU). However, Redmon et al.

[34] showed at lower IOU (IOU=0.5) one-stage models can

perform the same accuracy as two-stage models.

Model Compression: Another thrust of work has focused

on reducing the resources consumption of CNNs (due to

expensive computation and memory usage) by compressing

the network structures [17, 33]. Network pruning is one of

well-studied approach which removes unnecessary connec-

tions from CNN model, to gain inference speedup [43, 19].

Quantizing [16, 12] and binarizing [33, 1] are two other

methods that have been used to reduce network size and

computation load. These methods improve performance at

the hardware level by reducing the size of weights at the

binary code level. However, the standard GPU implementa-
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tion remains challenging for these methods to achieve run-

time speedup [17]. Also, the advantages of these methods

over other one-stage methods without the fully connected

layers (the network pruning target in [16]) is not clear.

Domain Adaptation: Object detection in the real world

still needs to address challenges such as low image quality,

large variance in the backgrounds, illumination variation,

etc. These could lead to a significant domain shift between

the training, validation and test data. Consequently, the field

of domain adaptation has been widely studied in image clas-

sification [41, 25] and object detection [6, 8] tasks. These

methods improve accuracy on well-known bench-marking

datasets. Nevertheless, they typically adopt an offline do-

main adaptation procedure and do not concern with domain-

change during the inference stage.

Knowledge Distillation: Knowledge distillation is another

approach to boost accuracy in CNNs. Under the knowledge

distillation setting, an ensemble of CNN models or a very

deep model will serve as the teacher model, which transfers

its knowledge to the student model (shallow model). Hin-

ton et al. [18] proposed a method to apply teacher predic-

tion as a “soft-label” and distill teacher classifier’s knowl-

edge to the student. Moreover, they proposed a temperature

cross entropy instead of L2 distance as the loss function.

Romero et al. [36] proposed a so-called “hint” procedure

to guide the training of the student model. There are also

other approaches to distill knowledge between different do-

mains such as from RGB to depth images [15, 37]. Knowl-

edge distillation has been also applied to the object detec-

tion task. Chen et al. [5] proposed a method which adopts

all of the soft labeling (labels generated by the teacher), the

hard labeling (the ground truth) and the hint procedure to

transfer knowledge from the teacher with deep feature ex-

tractor to the student with a shallow feature extractor. They

adopt a two-stage method (FasterRCNN [35]) in their sys-

tem. Mehta et al. [27] applied the same procedure to one

stage method (Tiny-Yolo v2).

Mullapudi et al. [30] proposed an online model distil-

lation for efficient segmentation. They adopt a light CNN

model as a student and a heavy model as a teacher. At the

inference time, the student model is trained periodically us-

ing the teacher knowledge. However, the naive usage of a

fixed period may not be efficient in their approach. More-

over, their shallow model struggles to handle emerging new

objects in the scene when these objects are observed in the

middle of the fixed period. Here, ours is able to select the

period length based on the incoming frames, by which TKD

could trigger re-training and thus detecting the emerging

new objects, as demonstrated experimentally in Sec. 5.

3. Temporal Knowledge Distillation

The conventional use of knowledge distillation has been

proposed for training CNNs based classification models.

In these models, we have a dataset (xi, yi), i = 1, 2, ..., n
where xi and yi are input images and the class labels. The

student model is trained to optimize the following general

loss function (with β is a modulation factor):

Os = Student(x);Ot = Teacher(x),

L(Os, (y,Ot)) = βLgt(Os, y) + (1− β)Lt(Os, Ot),
(1)

where Lt is the loss using teacher output (Ot) and Lgt is the

loss using ground truth y [27, 5, 18].

In addition to the classification task, object detection also

could benefit from the knowledge distillation procedure.

However, it’s not as straightforward as the classification

task. Most notably, the teacher model’s output may yield

misleading guidance to the student model [5]. The teacher

regression result can be contradictory to the ground truth la-

bels, also the output from the teacher regression module is

unbounded. To address these issues, [5] proposed a proce-

dure to only adopt teacher’s output at beneficial times. For

a one-stage object detection setting, [27] optimized the stu-

dent model with a similar loss function to Eq. 1.

In this paper, we propose a novel and bio-inspired way

of adopting the teacher model’s knowledge. Namely, tem-

porally estimating the expectation of object labels, their

sizes, and shapes based on the previously observed frames

or E[yi|α1, α2, ..., αi−1] where yi is our objects label and

α our observations. This expectation changes in time by

camera or objects movements, and/or the changing of the

field of view. Here, we utilize this extracted knowledge to

improve object detection performance. Unlike the previous

work such as [27, 5], we are not aiming to improve the fea-

ture extractor and/or the general knowledge of the student

model. We optimize the decoder inside the student model to

adapt it to the current environment. It is done by increasing

the likelihood of objects which are more frequently found

from the previous observations. Since the model requires

online training during the inference stage, it should be able

to address the following challenges:

1. Training is a time consuming procedure, running it at

the inference stage hurts model efficiency;

2. Selecting the key frames accurately on which the stu-

dent model needs to be adapted;

3. Objects with low appearance probability may not be

detected by the student model after adaptation;

4. The oracle model still introduces noise at locations

where there are no objects. Simply training the student

model with noisy oracle output decreases the accuracy.

In the following section, we will introduce our approach

to address these challenges respectively.

4. Our Approach

In this work, we adopt Yolo-v3 (as teacher) and Tiny-

Yolo v3 (as student) [34] as the base object detection meth-

ods. These two models are one-stage object detection mod-
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Figure 2: An overview of TKD (Temporal Knowledge Distillation): A low-cost student model is tasked to detect objects in

the main thread. To retain high accuracy, a key frame selector decides to activate the oracle model and adapt the student over

the environment. Since the execution of the Oracle model and retraining the student model occurs in separate threads, it does

not have a significant effect on the inference latency.

els. In both models, object detection is conducted at various

layers. The middle layers are used to detect large objects

and the last layers to detect small objects. Studies [34], [30]

and [23] showed that this strategy successfully improves the

object detection accuracy with a significant edge.

As mentioned in Section 1, the overall objective of our

system is to estimate the expectation of object labels, their

sizes, and shapes on the temporal domain and to improve

the performance of the student model. Following this in-

tuition, we put forward a mechanism with a combination

of an oracle model (which we consider it as the best possi-

ble model) and a student model (which is fast but has con-

siderably lower accuracy compared to the oracle). We are

transferring the temporal knowledge of the oracle model to

the student model at the inference time. By transferring this

knowledge, the student model adapts itself to the current

environment or scene. Without loss of generality, We se-

lect Yolo-v3 object detection model as the oracle model due

to its reliable and dominating performance compared with

other one-stage methods. We select Tiny-Yolo model [34]

as the student model due to its high base frame rate and

having a similar model structure with the Yolo-v3.

4.1. The TKD Architecture

We show our overall framework in Figure 2. In the stu-

dent model, we include two decoders as the TKD decoder

and the general decoder. Then, the pre-trained Yolo-v3 [34]

is adopted as the oracle. We run the Oracle model with the

input image and the weights of student’s TKD decoders get

updates at specific frames from the oracle model’s result.

Finally, we design a decision procedure using an LSTM

model, to generate the signals that indicate the right timing

to use the Oracle knowledge.

Specifically, we train Tiny-Yolo with a general decoder

over the COCO dataset [24]. The design of Tiny-Yolo has

two general decoders to improve the accuracy of different

object sizes. We first make a copy of the general decoders

bounded together as TKD decoder. The TKD decoder is

updated during the inference stage. We only update the last

three layers of Tiny-Yolo and treat it as the decoder, since it

yields enough performance in practice. We keep the general

decoder from Tiny-Yolo together with the TKD decoder to

make the final detection. TKD decoder and general decoder

are executed in two parallel threads which do not increase

the latency. This will preserve the chance of detecting vi-

able objects addressing the challenge (3) in Sec. 3.

4.2. Distillation Loss

Before describing our distillation loss, we provide a brief

overview of the other distillation loss functions. First, Chen

et al. [5] proposed a combination of hint procedure and

weighted loss function. They generate boxes and labels

using both the student and the teacher model, then calcu-

late two loss values comparing the teacher’s output and the

ground truth. In the end, they sum up the weighted loss val-

ues. If the student model outperforms the teacher model,

they continue training only using ground-truth supervision.

More recently, Mehta et al. [27] applied the similar pro-

cedure to the one-stage object detection models (Tiny-Yolo

v2 with some modification). They generate bounding boxes

and labels, and apply Non-Maximum Suppression (NMS)

to these boxes and then follow the loss function to optimize

the student model. The loss is defined in the following equa-

tion:

Lfinal = L
C
bb(b

gt
i , b̂i, b

T
i , o

T
i ) + L

C
cl(p

gt
i , p̂i, p

T
i , o

T
i )

+L
C
obj(o

gt
i , ôi, o

T
i ),

(2)
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where LC
bb, L

C
cl, L

C
obj are objectness loss, classification loss

and regression loss which are calculated using both ground

truth and the teacher output. Also, b̂i, p̂i, ôi are bounding

box coordinates, class probability and objectness of the the

student model. b
gt
i , p

gt
i , o

gt
i and bTi , p

T
i , o

T
i are values de-

rived from ground truth and the teacher model output.

In our study of the Yolo-v3 and Tiny-Yolo models, we

noticed that the detection layer is the most computation-

ally expensive part. In this layer, several processes are done

(sorting, applying softmax to classification cells, removing

low confidence boxes, etc.) to produce bounding boxes

and then applying NMS to these boxes. These processes

are computationally slow due to the multiple steps of pro-

cessing, and also running over CPU by the implementation.

Consequently, directly adopting these loss functions will be

also computationally expensive during the inference stage.

With this observation, we adopt the mean square error

(MSE) between the tensors generated by the student de-

coder and the oracle decoder, which should be the fastest

method. However, the side effects are also notorious. The

oracle model generates noises over some parts of frame

which have no object existences; hence directly forcing the

student model to retrain will hurt its performance.

Another approach could be calculating the MSE between

the tensor cells which have high confidence of object exis-

tence. But, the approach will hurt the student’s recognition

accuracy too. By applying this loss function, the student

model tends to generate redundant detection boxes which

yield a larger number of false positives.

To alleviate the downsides of both loss designs and still

to preserve their advantages, we introduce a novel loss by a

combination of them in Equation 3:

Lfinal =
∑

‖TH
s − T

H
o ‖22

+
∑

‖TE
s − ((λ ∗ TE

s ) + ((1− λ) ∗ TE
o ))‖22,

(3)

where TH
s &TH

o are the student and oracle cells with a high

chance of object existences and TE
s &TE

o are the cells with

a low expectation. More specifically, the first part on the left

side of Eq. 3 calculates the MSE between the parts which

have high confidence of objects. The second part calculates

a modulated MSE between the cells with a low expectation

from both the oracle output tensor and the student output

tensor. Here, λ is the modulation factor. Figure 3b shows

the procedure of creating the target tensor.

By using this loss function, the student model will have

a lower chance to generate extra false positives. Also, it

would not strictly force the student model to mimic the or-

acle exactly. We aim to partially address the challenges 1)

and 4) in Sec. 3, with such a fast and effective loss function.

4.3. Key Frame Selection

Another crucial module to enable TKD working properly

is a procedure to demonically select the time instances to

train the student model during the inference stage. Specifi-

cally, TKD seeks the frames that by training over them the

model has a higher expectation of reducing the loss, thus

eventually improves the detection accuracy. For the rest of

the paper, we denote these frames as the key frames.

Selecting a larger number of frames as the key frames

will hurt the performance since re-training is computation-

ally expensive; While selecting too few number of frames

will hurt the detection accuracy as the student may not align

well with the oracle model in time. Thus, an effective and

fast procedure to select the key frames is highly desired to

yield a positive effect on the system’s performance.

We propose a key frame selection procedure which is

both efficient and also practical. First, we check the training

prevention factor τ . If the student model has been trained

in any last τ frames; we will exit the key selection proce-

dure. It is based on the reasonable assumption that if we

have an environment change, it typically takes τ frames that

this change to be fully observable. Thus, when we train the

student, training for the next τ frames would not be ben-

eficiary. Second, we start our decision process which we

formulate in Equations 4:

I ∈ {0, 1}

{

0 Do not distill knowledge,

1 Distill knowledge,

I = LSTM(Fs) ∨ IR, IR ∼ B(2, Pt),

Pt =

{

max((Pt−1 − 0.05), 0.05) ∆L < σ,

min(2Pt−1, 1.0) ∆L > σ,

(4)

where I is the indicator that denotes our final decision. It

takes the disjunction of the LSTM’s output and the ran-

dom module’s output. We pass the features extracted from

the student model Fs (the last layer before the decoder) to

the LSTM module (with one LSTM layer & one fully con-

nected layer) which outputs a signal indicating to train the

student model or not. Here, it is worth to note that we in-

troduce another binary random module IR (with binomial

distribution B(2, pt)) which decides in a random fashion to

train the student model or not. The random procedure is

added as a safeguard in case the LSTM model outputs a se-

quence of erroneous decisions. In the end, we update the

LSTM module based on the result feeding back after the

training procedure. If the LSTM makes a correct decision

where the observed loss decrease ∆L < σ wherein our ex-

periments σ = −0.1, the random factor Pt will be reduced

by 0.05. If the LSTM model makes a wrong decision, we

update the LSTM model and double the random factor Pt.

Figure 3a shows an example output of key frames selected

by our method. We apply knowledge distillation selectively

to a few numbers of frames which partially addresses the

aforementioned challenges 1) and 2) in Sec. 3.
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Method

Hollywood Scene Dataset The pursuit of happiness

IOU=0.5 IOU=0.6 IOU=0.75 IOU=0.5 IOU=0.6 IOU=0.75

AP F-1 AP F-1 AP F-1 AP F-1 AP F-1 AP F-1

Random Selection 0.71 0.75 0.54 0.68 0.48 0.49 0.65 0.65 0.55 0.58 0.35 0.43

Scene Change Detection 0.68 0.58 0.47 0.50 0.23 0.35 0.54 0.58 0.45 0.53 0.35 0.44

Tiny-Yolo [34] 0.45 0.16 0.38 0.14 0.10 0.28 0.37 0.11 0.25 0.10 0.08 0.06

Tiny-Yolo (73%) + Yolo-v3 (27%) 0.60 0.49 0.59 0.49 0.44 0.46 0.58 0.47 0.52 0.46 0.39 0.44

TKD 0.75 0.76 0.58 0.69 0.49 0.50 0.73 0.67 0.59 0.61 0.40 0.46

Table 1: Performance of TKD with different training methods over Hollywood scene dataset and The pursuit of happiness.

5. Experiments

The presented theoretical framework suggests three hy-

potheses that deserve empirical tests: 1) TKD can perform

visual recognition efficiently, without hurting the recogni-

tion performance significantly; 2) the novel loss function

can improve online training of the decoder; 3) with our

TKD frame selector mechanism, the overall system yields

the best performance over other key-frame selection mech-

anisms, by locating the key frames more accurately (frames

which training over them can improve TKD accuracy).

To validate these three hypotheses, we evaluate TKD on

the Hollywood scene dataset [26], YouTube-Objects dataset

[32], The Pursuit of Happyness [29] and the office [10]. We

have trained all the base models (RetinaNet [23], Faster-

RCNN [35], Yolo-v3 and Tiny-Yolo [34]) over MS COCO

dataset [24]. We implemented the TKD as described in

Sec. 4 with two different configurations. First, we perform

the process of inference and distillation sequentially among

the same thread; the other way, we perform the distillation

in a separate thread and run the student and oracle in paral-

lel, both architecture implemented using the PyTorch envi-

ronment [31]. All experiments are carried out on one single

NVIDIA TITAN X Pascal graphics card.

Hollywood scene dataset [26] has 10 classes of scenes

distributed over 1152 video. In this dataset, videos are col-

lected from 69 movies. The length of these video clips are

from 5 seconds to 180 seconds. The length and diversity of

video clips make this dataset a perfect candidate to evaluate

our key selector method and the novel loss function.

YouTube-Objects dataset [32] is a weakly annotated

dataset from YouTube videos, 10 object classes of the PAS-

CAL VOC Challenge [11] has been used in this dataset. It

contains 9 and 24 video clips for each object class which

length of these videos are between 30 seconds to 3 minutes.

We used this dataset to evaluate TKD’s overall performance

due to its high-quality objects level annotations.

The pursuit of happyness [29] & The office [10] are

two famous movie and TV series. These two video clips

contain several scenes which have smooth transitions. The

Pursuit of happyness serves a great testbed since it has

scenes in different locations such as office, street, etc. It

is also more close to the real world scenario from a camera

of the intelligent agent. Also, the Office is selected as most

of the scenes have been recorded in the same location which

make it suitable for testing our novel loss function.

5.1. Ablation Study

As shown in table 1, we compare different strategies to

highlight the effectiveness of our proposed novel loss and

key frame selector. We consider the output of the oracle

model as ground truth and evaluating different methods over

it. Here, we compare five methods: 1) TKD with random

key frame selection; 2) TKD with Scene Change detection;

3) Tiny-Yolo without any training; 4) Combination of Tiny-

Yolo and Yolo-v3 without training; 5) TKD with our pro-

posed key frame selection method.

In the following experiments, we have set the λ to be 0.4
which is obtained heuristically. In 5.3, we will go through

the findings which we observed in our search for the best λ.

Random Selection: Here, instead of selecting key

frames by our proposed method, decision modules selects
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frames purely randomly for further processing. During the

testing phase, the probability is set to be 27% (to make

sure it selects more frames than our method (25% on aver-

age)). Random selection achieves 0.75 F1 score (IOU=0.5)

in the Hollywood scene dataset and achieves 0.65 F1 score

(IOU=0.5) in the pursuit of happiness. On average, it

reaches a frame-rate of 89 frames per second (FPS).

Scene Change Detection:This method uses the content-

aware scene detection method [4]. It finds areas where

the difference between two subsequent frames exceeds the

threshold value and used them as key frames for training the

student. We selected the threshold with the highest perfor-

mance and accuracy to report. This method achieves 0.58
F1 score and 0.58 F1 score in the Hollywood scene dataset

and The pursuit of happyness respectively. This method se-

lected 24% frames as key frames ultimately. On average,

the system yields a 93 FPS.

Tiny-Yolo without any training: We test Tiny-Yolo

[34] to show the accuracy of a strong baseline model with-

out temporal knowledge distillation. This model achieves

0.16 F1 score and 0.11 F1 score in the Hollywood scene

dataset and The pursuit of happyness respectively, which

are significantly lower than the other mentioned methods.

However, This model has 220 FPS, the fastest among all.

Tiny-Yolo + Yolo-v3 without training: In this config-

uration, we used Tiny-Yolo and Yolo-v3 v3 [34] together.

We designed a random procedure which runs Yolo-v3 with

a probability of 27% and Tiny-Yolo for the rest of the times.

This model achieves 0.49 F1 score and 0.47 F1 score in the

Hollywood scene dataset and the pursuit of happyness re-

spectively. Frame-rate approaches 89 FPS.

TKD with our key frame selection method: Initially,

we set τ (the training prevention factor) to 2 (We ob-

serve that the transition between two scenes takes at least

2 frames); along with setting the minimum random selec-

tion to 5%. In the Hollywood dataset, our method se-

lects around 26% of frames and the F1 score achieves 0.76
(IOU=0.5). In the pursuit of happyness movie, our method

selects around 24% of frames and the F1 score reaches to

0.67 (IOU=0.5). On average, the system achieves a frame-

rate of 91 FPS sequentially and 220 FPS with running in-

ference and knowledge distillation in parallel.

Table 1 lists the experimental results we observed with

these variants. These experiments show, the TKD, while

maintaining a similar frame-rate as other methods, it can

achieve higher recognition accuracy. To further validate this

claim, we conduct one additional experiment on a single-

shot movie [28], TKD selects 21% and random procedure

selects 27% of the total frames for re-training. They reach

comparable F1-score (TKD:0.807, Random:0.812), but our

TKD method uses 10400 frames less than the random one.

Method
IOU=0.5

mAP F-1 score

RetinaNet-50 [23] 0.45 0.44

FasterRCNN [35] 0.52 0.50

Tiny-Yolo [34] 0.38 0.33

Tiny-Yolo (73%) + Yolo-v3 (27%) 0.44 0.45

TKD 0.56 0.55

Oracle (Teacher)

Yolo-v3 [34] 0.60 0.62

Table 2: Compression of accuracy (IoU=0.5) over Youtube

object dataset.
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Figure 4: Accuracy and speed in Youtube-Objects Dataset.

5.2. Overall Performance

Table 2 shows mean average precision (mAP) and F1

score for five different object detection models as well as

our TKD method over the Youtube object dataset [32]. For

the student models without oracles supervision, we train

them to the best performance we could achieve. Not sur-

prisingly, larger or deeper models with larger numbers of

parameters perform better than shallower models, while

smaller models run faster than larger ones. However, TKD

achieves a high detection accuracy compare to RetinaNet,

FasterRCNN, Tiny-Yolo, the combination of Tiny-Yolo and

Yolo-v3 (same configuration which is described in Sec. 5.1).

TKD’s detection performance also approaches the perfor-

mance of the oracle model (Yolo-v3). In this experiment,

25% of frames have been selected for training using the pro-

posed key frames selection method.

To illustrate the accuracy-speed trade-off, we further plot

them in Figure 4, where we can see that the TKD archives

higher accuracy compare to other shallow methods while

still operating far above the real-time speeds with a 91 FPS.

The oracle model has a better detection accuracy, but it runs

much slower than the TKD.

5.3. Further Study and Discussions

In this section, we provide further insight into the loss

function design, the general knowledge distillation idea,

and suggest an application of the proposed method.

Loss function: we studied the λ effect over the number

of true positives and false positives generated by TKD. All

tests are done over an episode from The office [10]. We

choose this video since it was recorded in one indoor en-

vironment, with a consistent objects distribution. Table 3

shows the student model’s detection accuracy varies with

the different choices of λ. At λ = 0, we observed a lower
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ssd 0 0.2 0.4 0.6 0.8 1

IOU

0.5

AP 0.47 0.72 0.82 0.83 0.79 0.8

F-1 0.36 0.649 0.676 0.656 0.634 0.643

#TP 3353 8570 8371 7806 7274 7438

#FP 215 2952 1522 1129 814 841

Table 3: Parameter study of λ over the TKD.

number of false positives since a fewer number of frames

(5%) selected by the key frame selection module. With a

low λ (except at 0), we observe an increase in false positives

as the model tries to generate more boxes and loss func-

tion doesn’t punish hardly enough onto the student model

for generating false positives. With a high λ, we observe

drops in the true positive rates since we are forcing the stu-

dent to learn noises which are likely introduced by the ora-

cle model. Consequently, 0.4 is empirically the best choice

here, and we set it as the λ value for all the experiments.

To validate our loss design, we further compare its per-

formance with the one from Mehta et al. [27], where the

proposed loss is based on Non-Maximum Suppression algo-

rithm. It is computationally more expensive in comparison

with our approach. Figure 5 depicts that, an increasing num-

ber of targets from each frame will result in the increasing of

execution time for calculating the loss function in [27]. Our

loss design has an almost constant execution time, while the

proposed loss function by [27] is linearly growing.

Temporal knowledge distillation: Here, we take a

closer look at the key selection module. Figure 3a shows

its performance over two video clips from the Hollywood

scene dataset. Red crosses are frames selected by our pro-

posed method as key frames. At peaks, we have a scene

change and logically these points would be the best can-

didate for training. Following this insight, we observe our

model has a lag on detecting these points. Here, we ar-

gue that training over these frames is not the best one for

improving the student model’s accuracy. The scene detec-

tion method can identify these points yet table 1 shows it

achieves lower accuracy. Figure 3a shows the TKD after

detecting a change in loss start stabilizing the model by se-

lecting most of the frames (parts A & C) and for the rest

select less number of frames (parts B & D).

The proposed key frame selection method leads to im-

proved performance comparing with [30]’s. Figure 6 shows

that the number of selected key frames is adjusted based on

the domain change. With the fixed camera case in which

the domain does not change, the number of selected frames

decreases along observing more frames (validated over the

UCF Crime dataset [38]). Indeed, for the case of a moving

camera, more key frames are selected to adjust the TKD to

the specific domain. Here, the method presented in [30] re-

lies on a static strategy of selecting frames which are chosen

manually at the beginning.

For further evaluation, we applied TKD on one episode

of the office TV series. Then, we test the trained student

model over another episode without any re-training at the

inference time. We observed an increase of precision by 6%
comparing to the case in which we use the original student

model without applying TKD. The result demonstrates the

domain adaption capability of our method. Furthermore, it

maintains a high recall over other domains which indicates

that unseen objects have a chance to be detected. With the

method presented in [30], the model loses its generality over

unseen objects due to the practice of optimizing the overall

model with the new frames.

6. Conclusion and Future Work

In this paper, we propose a novel approach to distill

temporal knowledge of an accurate but slow object detec-

tion model to a tinier model yielding a light and accurate

object detection paradigm for robotic applications, called

TKD. We conducted experiments on the Hollywood scene

dataset, Youtube object dataset, the pursuit of happyness

movie and the office TV series, and empirically validate that

TKD maintains a high inference efficiency while achieving

a high recognition accuracy. The accuracy even approaches

the original oracle model for the object detection task.

The promising experimental results we observed suggest

several potential lines of future work: 1) the frame selection

procedure could be further optimized to be more selective

while maintaining the recognition accuracy; 2) we plan to

test our TKD model with an oracle model that follows the

two-stage object detection manner; 3) TKD performance

can future improve by adopting temporal features in video.
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