
L*ReLU: Piece-wise Linear Activation Functions

for Deep Fine-grained Visual Categorization

Mina Basirat Peter M. Roth

Institute of Computer Graphics and Vision

Graz University of Technology

{mina.basirat,pmroth}@icg.tugraz.at

Abstract

Deep neural networks paved the way for significant im-

provements in image visual categorization during the last

years. However, even though the tasks are highly vary-

ing, differing in complexity and difficulty, existing solu-

tions mostly build on the same architectural decisions. This

also applies to the selection of activation functions (AFs),

where most approaches build on Rectified Linear Units (Re-

LUs). In this paper, however, we show that the choice of a

proper AF has a significant impact on the classification ac-

curacy, in particular, if fine, subtle details are of relevance.

Therefore, we propose to model the degree of absence and

the degree presence of features via the AF by using piece-

wise linear functions, which we refer to as L*ReLU. In this

way, we can ensure the required properties, while still in-

heriting the benefits in terms of computational efficiency

from ReLUs. We demonstrate our approach for the task

of Fine-grained Visual Categorization (FGVC), running ex-

periments on seven different benchmark datasets. The re-

sults do not only demonstrate superior results but also that

for different tasks, having different characteristics, different

AFs are selected.

1. Introduction

Deep Convolutional Neural Networks (e.g., [1, 2] have

recently shown to be very beneficial for a variety of applica-

tions in the field of Computer Vision. Thus, there has been,

for instance, a considerable interest in designing new net-

work architectures, introducing efficient data augmentation

techniques, and improving the parameter optimization. In

addition, to increase the robustness and the speed of train-

ing also different techniques for initialization (e.g., [3, 4])

and normalization (e.g., [5]) have been explored. However,

one relevant and important parameter is mostly ignored, the

proper choice of the non-linear activation function (AF).

(a) L*ReLU (proposed). (b) ReLU.

Figure 1: Binary classification for the two-moon dataset:

Just by using a proper activation function a better decision

boundary can be estimated.

In fact, recent works have demonstrated that introducing

[6–10]) and learning [11–14] new AFs and their parameters

are beneficial in terms of convergence speed and training

stability, however, also that only minor improvements for

the final tasks can be achieved. Thus, most deep learning

approaches use Rectified Linear Units (ReLU) [15], which

have proven to be reliable and allow for fast learning. In

this paper, however, we show that the proper choice of the

AF can significantly improve the performance of deep neu-

ral networks for applications like segmentation, tracking, or

object retrieval where subtle visual differences are of rele-

vance. In particular, we demonstrate these benefits for Fine-

grained Visual Categorization (FGVC) [16, 17].

In contrast, to Coarse-grained Visual Categorization

(CGVC), which aims at distinguishing well-defined cate-

gories (e.g., dogs, birds, or man-made objects), the goal

of FGVC [16, 17] is to differentiate between hard-to-

distinguish classes (e.g., classes belonging to the same cate-

gory such as different species of birds). Thus, there is a high

visual similarity between the classes, where even subtle dif-

ferences are of relevance. This is illustrated in Fig. 1, where

we trained a shallow network (2 layers) for a two-class toy

problem (i.e., the two-moon dataset) using different acti-

vation functions, namely ReLU and the proposed L*ReLU

with α = 0.1). In fact, using the same architecture a bet-

1218

ter decision boundary can be estimated. In particular, the

samples close to the true decision boundary, having a small

distance to each other, can be classified significantly better.

In this paper, we address the FGCV problem by using a

proper AF, modeling the degrees of presence and absence of

features [7]. If a feature is present in the current sample, an

AF returns a value greater than zero; on the other hand, if a

feature is absent, a value smaller or equal to zero is returned.

For example, ReLU maps the presence of the features via

identity, whereas all missing features are mapped to zero.

For FGCV, however, it is important also to retain the degree

of absence, i.e., the output of the AF in the deactivation state

should not be zero.

To ensure the desired properties, we need an AF which is

monotonically increasing and uniform-continuous. In other

words, the negative values should not saturate, and simi-

lar inputs should produce similar outputs. We are ensuring

these properties via a piece-wisely defined (on the positive

and the negative domain) linear AFs, where the positive

part is the identity function and the negative part a linear

function with a data-dependent slope. Thus, we refer our

method to as L*ReLU, indicating the similarities to Leaky

ReLU (having a slope of 0.01) and the fact that the slope is

set according to a data-dependent Lipschitz constant [18].

In this way, not only the desired properties are ensured but

also the positive properties of ReLU are inherited. The ex-

perimental results on seven different datasets clearly show

the benefits in terms of classification accuracy compared to

the baselines, but also that for different tasks different AFs

(i.e., different parameterizations) are necessary.

Thus, the main contributions of this paper can be sum-

marized as follows:

• We propose to model the degree of absence and the

presence of features via a properly defined activation

function (AF).

• We propose L*ReLU, a piece-wise linear AF, where

the slope of the negative part is selected according to a

properly defined, data-dependent Lipschitz constant.

• We run a thorough experimental analysis on five

different Fine-grained Visual Categorization (FGCV)

benchmarks and compared to both pre-defined as well

as parametric AFs. The results clearly demonstrate the

benefits of the approach in terms of improved classifi-

cation accuracy and applicability for multiple tasks.

2. Related Work

In the following, we first give a short review on Fine-

grained Visual Categorization (FGVC), then discuss in de-

tail different AFs for deep network training, and finally

summarize the idea of Lipschitz regularization.

2.1. Finegrained Visual Categorization

To provide a sufficient discriminative capability for

FGVC, several techniques have been explored over time.

For instance, this can be achieved by learning discrimina-

tive features [19, 20], where recently, in particular, Bilinear-

CNNs, which compute second-order bilinear features in-

teractions using two symmetric CNNs [16, 21–24] have

shown to work very well in practice. Alternative approaches

are focusing on local information and model parts of ob-

jects [17, 25–30]. To identify and detect informative re-

gions which include important local information, recently,

attention models have been emerging [31–35]. In addition,

also metric learning approaches (e.g., [36]), which might be

most similar to our approach, are applied. In contrast, in this

work, we show that the FGVC problem can be addressed by

applying more appropriate, task-specific AFs.

2.2. Predefined Activation Functions

Starting from simple thresholding functions, initially, the

main focus when developing activation functions (AFs) was

on squashing functions such as Sigmoid and Tanh [37]. In

particular, as following the universal approximation theo-

rem [37] any continuous real-valued function can be arbi-

trary well approximated by a feed-forward network with

one hidden layer if the AF is continuous, bounded, and

monotonically increasing. However, such functions are suf-

fering from the vanishing gradient problem [38], which is,

in particular, a problem if the networks are getting deeper.

To overcome this problem, various non-squashing func-

tions were introduced, where, in particular, ReLU [15]

paved the way for the success for deep learning. As the

derivative of positive inputs of ReLU is one, the gradient

cannot vanish. On the other hand, all negative values are

mapped to zero, resulting in two main problems: (1) There

is no information flow for negative values, which is known

as dying ReLU. (2) The statistical mean of the activation

values is still larger than zero, leading to a bias shift in suc-

cessive layers. Moreover, all negative values are treated

equally, which is not desirable for the FGVC task! To

deal with the dying-ReLU-problem Leaky ReLU (LReLU)

[39] introduces a very small negative slope (α = 0.01)

for the negative part. Even though showing better results

for many tasks, the function is still suffering from the bias

shift. Slightly differently Randomized Leaky Rectified Lin-

ear Unit (RReLU) [40] sets the slope for the negative part

randomly.

Both shortcomings of ReLU can be avoided by using Ex-

ponential Linear Unit (ELU) [7], which is robust to noise

and eliminates the bias shift in the succeeding layers by

pushing the mean activation value towards zero. By return-

ing a bounded exponential value for negative inputs ELU

is saturated at a predefined threshold. The idea was later

extended by introducing Scaled Exponential Linear Unit

1219

(SELU) [6], showing that the proposed self-normalizing

network converges towards a normal distribution with zero

mean and unit variance. However, both ELU and SELU are

bounded in the negative part, which is not a desired property

for the FGVC task.

2.3. Learned and Parametric Activation Functions

To increase the flexibility, parametric AFs have been pro-

posed, which learn parameters to tune themselves during

the training. For instance, Parametric ReLU (PReLU) [41]

builds on the ideas of LReLU, but learns the slopes for the

negative part based on the training data. Moreover, SReLU

[42] is defined via three piece-wise linear functions includ-

ing four adaptive scalar values, forming a crude S shape.

Having both convex and non-convex shapes are remarkable

characteristics of SReLU.

Similarly, Parametric ELU [43] evades the vanishing

gradient problem and allows for precisely controlling the

bias shift by learning parameters from the data. More com-

plex functions (i.e., even non-convex ones) can be learned

using Multiple Parametric Exponential Linear Units [14],

which, in turn, leads to a better classification performance

and preferable convergence properties.

The same goal can also be achieved by adopting ideas

from reinforcement learning [11] and genetic programming

[12], where complex search spaces are explored to construct

new AFs. In particular, in [11] Swish, a combination of a

squashing and a linear function, was found as the best so-

lution for a variety of tasks. Moreover, Parametric Swish

(PSwish) contains a trainable (scaling) parameter. Similar

functions, also yielding slightly better results in the same

application domains, were also found by [12]. Recently, a

theoretic justification for these results have been given in

[13], showing that Swish-like functions propagate informa-

tion better than ReLU.

However, even though these functions yield good results

for CGVC, they cannot cope very well with FGVC tasks.

Thus, the goal of this paper is to define AFs better suited

for more complex image classification tasks, capturing the

small, subtle differences between the rather similar classes

more effectively.

2.4. Lipschitz Regularization

Motivated by fact that even small perturbations on the

input data can significantly change the output (“adversarial

samples”) [44, 45], there has been considerable interest in

Lipschitz regularization for deep neural network training.

Recent works show that given a constrained Lipschitz con-

stant is meaningful for DNNs in terms of robustness and

classification accuracy [18, 46, 47]. The Lipschitz constant

bounds the ratio of output change to change in its input. In

particular, for classification tasks, a small Lipschitz constant

improves generalization ability [48, 49]. In this way, in [50]

a L2-nonexpansive neural network is introduced to control

the Lipschitz constant and increase the robustness of classi-

fier. Similarly, a robust deep learning model using Lipschitz

margin is proposed for object recognition [51]. These works

mainly intended to increase the robustness against adversar-

ial samples to guarantee better convergence properties. In

contrast, we adopt ideas that relate the separability of mul-

tiple classes to the choice of a proper Lipschitz constant for

piece-wise linear AFs. This additionally ensures the desired

properties to model the degrees of absence and presence of

features very well.

3. L*ReLU: Lipschitz ReLU

In the following, in Sec. 3.1, we first discuss the problem

of modeling the presence and the absence of features by via

AFs. Then, we discuss technical preliminaries on continuity

of functions in Sec. 3.2. Finally, in Sec. 3.3, we introduce

L*ReLU, which copes with the similarity of samples in the

FGVC problem much better.

3.1. Presence and Absence of Features

The output aj of a single neuron j within a neural net-

work is computed by

aj = f

(

n
∑

i=0

wi,jai

)

, (1)

where ai are the outputs of the n connected neurons (from

the previous layer), wi,j are the related weights, and f(x)
is a non-linear function referred to as an activation function

(AF). In this way, f(x) codes the degree of presence or ab-

sence of a feature in the input [7]: a feature is present if

f(x) > 0 and absent if f(x) ≤ 0.

The degree of presence is modeled very well for most

existing AFs. This can be seen from Figure 2, where we

show well-known and widely used AFs, which are defined

in Table 1. In these cases, this is achieved via the positive

part of the function (i.e., for x > 0) being either a linear

function (ReLU, LReLU, ELU) or a ”quasi-linear” function

(Swish).

Name Function

(a) ReLU y(x) = max(x, 0)

(b) LReLU y(x) = max(x, 0) + min(0.01x, 0)

(c) ELU y(x) = max(x, 0) + min(ex − 1, 0)

(d) Swish y(x) = x · sigmoid(βx)

Table 1: Sample activation functions. For Swish the param-

eter β = 1 is fixed, however, it can be trained via PSwish.

1220

−4 −2 2
−1

1

2

3

−4 −2 2
−1

1

2

3

(a) f(x) = ReLU. (b) f(x) = LReLU .

−4 −2 2
−1

1

2

3

−4 −2 2
−1

1

2

3

(c) f(x) = ELU. (d) f(x) = Swish.

Figure 2: Activation functions as defined in Table 1.

On the other hand, the degree of absence of features is

not captured very well. For instance, ReLU does define a

clear “off-state” or “deactivation-state”: f(x) = 0 for all

negative values. In this way, the neuron does not model any

information about the degree of absence which can be prop-

agated to the next layer. Similar also applies to ELU. Even

though f(x) is getting smaller if x is decreased, the func-

tion saturates at −1, which represents the “off-state”. As a

result, the derivations for small values are getting smaller,

thus, reducing the information that is propagated to the next

layer. Swish, in contrast, models the degree of absence for

small negative values well but also saturates at 0 if the val-

ues are further decreased.

Taking only the presence of features into account is suf-

ficient for many applications including CGVC. If a feature

is absent, it is sufficient to say “It’s not there!”. Therefore,

AFs such as ReLU, ELU, SELU, and Swish are well suited

for CGVC tasks. This is also revealed by our experimen-

tal results, where we show that for CGVC the choice of the

AF has only a minor impact on the finally obtained accu-

racy. However, just modeling the presence is not sufficient

for FGVC, where the different classes often share a similar

appearance and often differ just in subtle visual differences.

In these cases, also modeling the degree of absence is neces-

sary. To define functions showing the necessary properties,

we need first to review uniform- and Lipschitz-continuous

functions.

3.2. Uniform and Lipschitzcontinuous Functions

Even though the following concepts are more general,

for reasons of simplicity, we will restrict the discussion to

functions in R [52, 53].

A function f : R → R is called Lipschitz-continuous if

there exist a constant L ≥ 0 such that

|f(xi)− f(xj)| ≤ L|xi − xj | (2)

for all xi, xj ∈ R. Any L fulfilling the condition Eq. (2) is

referred to as a Lipschitz constant. The minimum L̂ of all

Lipschitz constants L is often called the minimal Lipschitz

constant. For xi 6= xj we can re-write Eq. (2) to

|f(xi)− f(xj)|

|xi − xj |
≤ L. (3)

This means that the slopes of secants and tangents in an

interval I ∈ R are bounded by L. In particular, we have

f ′(z) ≤ L for all z ∈ I,

or in other words:

L = sup
x∈I

|f ′(z)|.

In this way, the Lipschitz constant L measures the max-

imum change rate of function f within an interval I . If

0 ≤ L < 1, then f is called a contraction mapping on I .

Moreover, a Lipschitz-continuous function f : R → R

is also uniformly continuous, that is, for every ǫ > 0 there

exits a δ > 0 such that for all xi, xj ∈ R we have

|xi − xj | < δ ⇒ |f(xi)− f(xj)| < ǫ. (4)

In other words, a uniform-continuous function ensures

that f(xi) and f(xj) are close to each other if xi and xj are

sufficiently close to each other.

3.3. Piecewise Linear Activation Functions

From the discussion above, it is clear that for FGVC an

AF is needed, which models both the degree of presence and

the degree of absences of features. As these two aspects are

related to positive and negative domain of R, we propose to

use a piece-wise function for the positive values x > 0 and

the negative values x ≤ 0:

f(x) = p(x > 0) + n(x ≤ 0), (5)

with

p(x) = max(φ(x), 0) (6)

and

n(x) = min(η(x), 0), (7)

where φ(x) and η(x) can be any (non-linear) function f :
R → R. In this way, we ensure that the positive and the

negative part of the piece-wise function reside in the first

and third quadrants of a Cartesian coordinate system. It is

easy to see that we can easily re-write almost all popular

AFs to such a form.

Modeling the presence of features is already realized

very well by existing AFs using linear (ReLU, ELU) or

quasi-linear (Swish) functions for the positive domain.

Modeling the degree of absence of features, however,

1221

is more difficult. In particular, we would need a non-

saturating, monotonically increasing function with bounded

change rate (i.e., similar inputs should generate similar out-

puts). Given the definitions from Sec. 3.2 this means that

we need contractive, unbounded Lipschitz- and thus also

uniform-continuous functions.

However, as can be seen from the example shown in

Sec. 4.6, defining such AFs is not trivial. Thus, we propose

to use a piece-wise linear approximation:

p(x) = max(x, 0) (8)

and

n(x) = min(αx, 0), (9)

where α ≥ 0 defines the slope of the linear function for the

negative part.

Indeed, using the parameter setting α = 0.01, we get

the well-known LReLU activation function. However, as we

also show in the experiments using such small slopes, which

are typically working well for CGVC, fails for FGVC, as

the degree of absence of features cannot be modeled very

well. The same also applies to RReLU, where the slopes

are chosen randomly. Thus, a valid choice would be to use

PReLU, where the slope parameters are estimated from the

data. However, the method is not flexible enough in prac-

tice, as the optimizer often gets stuck into local minima,

which are not generalizing very well. Thus, an initialization

close to the optimal solution is needed. We also demon-

strate this behavior in the experimental results, where we

show that using PReLU only gives reasonable results if the

approach was initialized close to the optimal solution.

Thus, the critical question is, how to optimally set the

slope α? Following the ideas of [12] and [18], we argue that

there is no unique solution across different tasks. In particu-

lar, [12] shows that for classification tasks of different com-

plexity different AFs are useful. In contrast, [18] proves that

given any finite dataset where different classes are separated

in the input space by at least a distance of c, there exists a

function with Lipschitz constant c/2 that correctly classifies

all points. In other words, different datasets might have dif-

ferent separability, raising the need for learning functions

with different properties. This can be realized by choosing

a proper slope according to the Lipschitz-properties of the

data.

That is, we call our approach L*ReLU, indicating both

that the used AF builds on the ideas of Leaky ReLU (and

PReLU), but also that the slope parameter is chosen ac-

cording to the Lipschitz-properties of the data. Indeed, our

experiments also demonstrate that for the seven different

datasets different parameters are needed, however, also that

these are not critical. In practice, or each task we can iden-

tify a restricted range for the Lipschitz parameter (and thus

the slope) [47], yielding stable and reliable classification re-

sults.

4. Experimental Results

To demonstrate the importance and the effect of using

proper AFs, we run experiments on seven different bench-

mark datasets: (1) two coarse-grained datasets (i.e., CIFAR-

10 and CIFAR-100) [54] and (2) five fine-grained (i.e.,

Caltech-UCSD Birds-200-2011 [55], Car Stanford [56],

Dog Stanford [57], Aircrafts [58], and iFood [59]). We

compared our approach to existing AFs, known to yield

good results in practice, namely ReLU [15], ELU [7],

SELU [6], and Swish [11]. Moreover, we also compare

to parametric AFs, namely PReLU [43] and PSwish [11],

showing that L*ReLU with a proper selected Lipschitz con-

stant yields better results compared to all of these baselines.

In the following, we first describe the used benchmarks

and the experimental setup and then discuss the results for

both the coarse-grained and the fine-grained datasets in de-

tail.

4.1. Benchmark Datasets

The benchmark datasets described below are illustrated

in Figure 3. It can be seen that for the coarse-grained

problem (Figure 3 (a)) the single classes are well defined,

whereas for the fine-grained problem (Figs. 3 (b)–(f)), the

differences are just subtle and often hard to see.

CIFAR-10 and CIFAR-100 The CIFAR-10 dataset con-

sists of 60,000 32 × 32 colour images in 10 classes, with

6,000 images per class. CIFAR-100 is just like the CIFAR-

10, except that it has 100 classes containing 600 images.

The data is split into 5,0000 training images and 10000 test

images.

Caltech-UCSD Birds-200-2011 The dataset contains

11,788 images of 200 bird species. Each species is asso-

ciated with a Wikipedia article and organized by scientific

classification (order, family, genus, species). The data is

split into 5,994 training images and 5,794 test images [55]).

Car Stanford The dataset contains 16,185 images of 196

classes of cars. The data is split into 8,144 training im-

ages and 8,041 test images, where each class has been split

roughly in a 50-50 split. Classes are typically at the level of

Make, Model, Year, e.g. 2012 Tesla Model S or 2012 BMW

M3 coupe [56].

Dog Stanford The dataset contains images of 120 breeds

of dogs from around the world. This dataset has been built

using images and annotation from ImageNet for the task of

fine-grained image categorization. The total number of im-

ages is 20,580. The data is split into 12,000 training images

and 8,580 test images [57].

1222

Air crafts The dataset contains 9,960 images of aircraft,

with 100 images for each of the 102 different aircraft model

variants [58]. The data is split into 3,216 training, 3,231 test

and 3,231 validation images.

iFood Dataset This large data-set consist of 211 fine-

grained (prepared) food categories with 101,733 training

images collected from the web. Test set contains 10,323

images. images1.

(a) CIFAR-10. (b) Dog Stanford.

(c) Caltech Bird-UCSD. (d) Aircraft.

(e) Car Stanford. (f) iFood.

Figure 3: Fine-grained visual categorization benchmark

datasets (b)–(f) plus CIFAR-10 (a) used in our studies.

4.2. Experimental Setup

To allow for a fair comparison, for all experiments the

same experimental setup was used. In particular, to keep the

computational cots at a reasonable level (i.e., one NVIDIA

Titan XP GPU was used), we re-sized all images to a size of

120×120. We trained an architecture similar to VGG cosist-

ing of eight convolutional layers plus two fully connected

layers with 400 and 900 units, respectively. Moreover, we

used a batch size of 70 and set the maximum pooling size

to seven. For training an Adam optimizer with batch nor-

malization was applied. Since we used a different image

size and the weights are related to the used AF, we were not

able to use pre-trained weights. Thus, we used a random

initialization for each training, but—to ensure statistically

fair results—we run all experiments three times, where the

mean results (and the standard deviations) are shown, re-

spectively.

1https://sites.google.com/view/fgvc5/ competitions/fgvcx/ifood

4.3. Coarsegrained Visual Categorization

First of all, we evaluated our approach for the coarse-

grained datasets (i.e., CIFAR-10 and CIFAR-100). In Ta-

ble 2 we show the final averaged results for all methods.

The same results also covering the standard deviation are

shown in form of boxplots in Figure 6 (a). In addition, in

Figure 4, we analyze the classification accuracy when vary-

ing the slope. Also here, in addition to the mean, the stan-

dard deviation is shown. For CIFAR-10 it can be seen that

all AFs perform on par, where Swish slightly outperforms

the others (which confirms previously published studies).

In addition, as can be seen from Figure 4 (a), increasing

the slope for L*ReLU decreases the classification accuracy,

showing that the data is already well separable and that fur-

ther enforcing the separability is not helpful.

In contrast, for CIFAR-100 we can observe slightly dif-

ferent results. Figure 4 (b) also shows a clear trend that

increasing the slope decreases the classification accuracy of

L*ReLU. However, a slight slope in the range of 0.1 to 0.25
(with a peak at 0.1) demonstrated to be beneficial (com-

pared to ReLU) and allows to outperform the baselines. Due

to the higher number of classes (i.e., 100 instead of 10), the

task is more complex as the classes are getting more similar.

Thus, modeling the degree of absence is getting relevant.

Dataset ELU Swish ReLU SeLU L*ReLU

CIFAR-10 90.81% 91.23% 90.83% 89.72% 90.95%

CIFAR-100 63.64% 64.36% 65.32% 63.29% 66.44%

Table 2: Mean accuracy for CGVC: The best result is in

boldface, the runner up in italic.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
80%

85%

90%

95%

100%

Slope

A
cc
u
ra
cy

µ
σ

(a) CIFAR-10

0.1 0.2 0.3 0.4 0.5 0.6 0.7
55%

60%

65%

70%

75%

Slope

A
cc
u
ra
cy

µ
σ

(b) CIFAR-100

Figure 4: Class. accuracy of L*ReLU vs. slope for CGVC.

4.4. Finegrained Visual Categorization

Next, we run the same experiments for the more com-

plex FGVC task. As discussed above, the single classes

are more similar as they represent the same general cate-

gory, making it harder to distinguish the single instances

and classes. The finally obtained averaged classification ac-

curacy for all five datasets and all AFs are summarized in

1223

0.2 0.4 0.6 0.8
30%

35%

40%

45%

50%

Slope

A
cc
u
ra
cy

µ
σ

(a) Bird.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
30%

35%

40%

45%

50%

Slope
A
cc
u
ra
cy

µ
σ

(b) Car.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

30%

35%

40%

45%

50%

Slope

A
cc
u
ra
cy

µ
σ

(c) Dog.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
30%

35%

40%

45%

50%

Slope

A
cc
u
ra
cy

µ
σ

(d) iFood.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
30%

35%

40%

45%

50%

Slope

A
cc
u
ra
cy

µ
σ

(e) Aircraft.

Figure 5: Class. accuracy of L*ReLU vs. slope for FGVC.

CIFAR-10 CIFAR-100

60%

70%

80%

90%

Datasets

A
cc
u
ra
cy

Swish ELU SeLU ReLU L*ReLU

(a)

Bird Car Dog iFood Aircraft

30%

35%

40%

45%

50%

Datasets

A
cc
u
ra
cy

Swish ELU SeLU ReLU L*ReLU

(b)

Figure 6: Mean and standard deviation of accuracy for all datasets and AFs: (a) CGVC and (b) FGVC.

Table 3. The same results also covering the standard devi-

ation are shown in form of boxplots in Figure 6 (b). The

results show that for all datasets L*ReLU finally yields the

best and Swish the second best results. Whereas the results

are close (+1%) for Dogs and Aircraft for the best and the

second best results, the gap is larger for iFood, Car, and

Birds: up to +5%. Moreover, it is notable that compared to

ReLU, which can be seen as a baseline, there is a significant

gap for all datasets.

Dataset ELU Swish ReLU SeLU L*ReLU

Birds 200 39.12% 38.89% 38.18% 36.86% 44.75%

Car 41.86% 44.72% 33.08% 39.17 % 47.16%

Dogs 35.67% 37.04% 35.17% 33.65% 37.85%

iFood 38.12% 41.14% 37.67% 34.67% 42.94%

Aircraft 38.97% 39.63% 38.49% 30.54% 40.72%

Table 3: Mean accuracy for FGVC: The best result is in

boldface, the runner up in italic.

In addition, again we analyze the averaged classification

accuracy (plus standard deviation) varying the slops in Fig-

ure 5. It can be seen that the different datasets define a dif-

ferent Lipschitz level, showing that applying task-specific

AFs is meaningful. Moreover, also these curves show clear

trends with clear peaks. Indeed, for all datasets there is con-

strained slope range of [0.1, 0.4], where stable classification

results are obtained. Thus, the selection of the Lipschitz

constant for L*ReLUis important, but not critical.

4.5. Comparison to Parametric AFs

Next, we give a detailed comparison of L*ReLU to para-

metric AFs, which should better adapt to more complex

problems due to trainable parameters? In particular, we

compare our approach to Parametric ReLU (PReLU) [43]

and Parametric Swish (PSwish) [11] using different initial-

izations: for PReLU we used a small (0.05), a large (0.7),

and the best slope for L*ReLU to initialize α; similarly, for

PSwish a small (0.0) and large (1.0) value was used to ini-

tialize β (see Table 1). The corresponding results are shown

in Figure 7, respectively. From Figure 7(a) it can be seen

that the classification accuracy is highly varying depending

on the initialization. Similar also applies to PSwish, even

though the variation in the accuracy is smaller and thus less

sensitive to the initialization.

4.6. Importance of Lipschitz Constant

Finally, we would like to demonstrate the importance of

the proper selected Lipschitz constant, by comparing the ac-

1224

Bird Car Dog iFood Aircraft

30%

35%

40%

45%

50%

Datasets

A
cc
u
ra
cy

PReLU
(α = 0.05)

PReLU
(α = 0.7)

PReLU
(α = best)

L*ReLU
(α = best)

α
=

0
.35

α
=

0
.25

α
=

0
.05

α
=

0
.35

α
=

0
.35

α
=

0
.35

α
=

0
.25

α
=

0
.05

α
=

0
.35

α
=

0
.35

(a)

Bird Car Dog iFood Aircraft

30%

35%

40%

45%

50%

Datasets

A
cc
u
ra
cy

Swish PSwish
(β = 0)

PSwish
(β = 1)

L*ReLU
(α = best)

α
=

0
.35

α
=

0
.25

α
=

0
.05

α
=

0
.35

α
=

0
.35

(b)

Figure 7: Accuracy for FGVC: L*ReLU vs. parametric AFs: (a) PReLU and (b) PSwish.

curacy of a more complex activation function [13],

f(x) = tanh(ax) + bx, (10)

with our linear approximation

g(x) = αx (11)

based on the Lipschitz constant for the negative domain.

For the positive domain, we used the identity function, re-

spectively. However, in the following, we are only focusing

on the negative domain! Both functions are illustrated in

Figure 8. From Eq. (10) we compute the derivation

f ′(x) =
1

cos2(ax)
+ b. (12)

In this way, for a = 0.1 and b = 0.15 we compute the

Lipschitz constant via supx≤0
(f ′(x)) = 0.25. Similarly,

setting α = 0.25 the Lipschitz constant of g(x) is 0.25, as

g(x) is a linear function having the same slope for all x ≤ 0.

−10 −8 −6 −4 −2 2 4

−2

2

Figure 8: Two functions sharing the same Lipschitz con-

stant L = 0.25 for the negative domain: f(x) =
tanh(0.1x)+0.15x (red) and g(x) = 0.25x (blue).

In this way, we set the parameters a and b of fa,b(x)
such that the Lipschitz constant matches the best and the

worst slope L*ReLU for each datasets, respectively. The

thus obtained results are shown in Table 4, showing that for

all datasets we get a similar classification accuracy, indicat-

ing that the Lipschitz constant covers essential information

about the data.

Dataset
L*ReLU
(best α)

fa,b(x)

(best α)
L*ReLU
(α=0.7)

f0.4,0.3(x)

(α=0.7)

Car 47.16% 46.49% (a) 33.31% 36.89%

Dogs 37.85% 36.95% (b) 30.32% 31.06%

Birds 200 44.75% 43.16% (c) 42.23% 43.17%

iFood 42.94% 43.21% (c) 33.49% 35.24%

Aircraft 40.72% 40.08% (c) 32.95% 35.04%

Table 4: Activation functions sharing the same Lipschitz

constant finally yield a similar classification result: (a) a=
0.1, b=0.15; (b) a=0.05, b=0.05; (c) a=0.15, b=0.2.

5. Conclusion and Discussion

In this paper, we demonstrated that using a proper acti-

vation function can significantly improve the classification

accuracy for the problem of Fine-grained Visual Catego-

rization (FGVC), where subtle differences between similar

images are of relevance. Thus, we propose to use activa-

tion functions, which model the degrees of presence and

absence of features. Whereas the degree of presence is re-

alized via an identity function, the degree of absence can be

modeled via monotonically increasing uniform-continuous

functions. In our case, we realized this by using piece-wise

linear functions, where the slope of the negative part is set

according to an optimal Lipschitz constant (given by the

data). In this way, we outperform a wide range of fixed and

parametric AFs for different FGVC benchmark datasets.

Future work would include to automatically estimate the

Lipschitz constant from the data and to explore the found

properties for different, more complex AFs.

Acknowledgement This work was partially supported by

FFG Bridge project SISDAL (21604365). We gratefully ac-

knowledge the support of NVIDIA Corporation with the do-

nation of the Titan Xp GPU used for this research.

1225

References

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.

MIT Press, 2016.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Na-

ture, vol. 521, pp. 436–444, 2015.

[3] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the im-

portance of initialization and momentum in deep learning,”

in Proc. Int’l Conf. on Machine Learning, 2013.

[4] D. Mishkin and J. Matas, “All you need is a good init,” in

Proc. Int’l Conf. on Learning Representations, 2017.

[5] C. Laurent, G. Pereyra, P. Brakel, Y. Zhang, and Y. Bengio,

“Batch normalized recurrent neural networks,” in Proc. Int’l

Conf. on Acoustics, Speech and Signal Processing, 2016.

[6] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter,

“Self-normalizing neural networks,” in Advances on Neural

Information Processing Systems, 2017.

[7] D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and ac-

curate deep network learning by exponential linear units

(ELUs),” in Proc. Int’l Conf. on Learning Representations,

2016.

[8] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted lin-

ear units for neural network function approximation in rein-

forcement learning,” Neural Networks, vol. 107, pp. 3–11,

2018.

[9] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse recti-

fier neural networks,” in Proc. Int’l Conf. on Artificial Intel-

ligence and Statistics, 2011.

[10] C. Gulcehre, M. Moczulski, M. Denil, and Y. Bengio, “Noisy

activation functions,” in Proc. Int’l Conf. on Machine Learn-

ing, 2016.

[11] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for ac-

tivation functions,” in Proc. Int’l Conf. on Learning Repre-

sentations (Workshop track), 2018.

[12] M. Basirat and P. M. Roth, “Learning task-specific activation

functions using genetic programming,” in Proc. Int’l Joint

Conf. on Computer Vision, Imaging and Computer Graphics

Theory and Applications, 2019.

[13] S. Hayou, A. Doucet, and J. Rousseau, “On the selection

of initialization and activation function for deep neural net-

works,” arXiv:1805.08266, 2018.

[14] Y. Li, C. Fan, Y. Li, Q. Wu, and Y. Ming, “Improving deep

neural network with multiple parametric exponential linear

units,” Neurocomputing, vol. 301, pp. 11–24, 2018.

[15] V. Nair and G. E. Hinton, “Rectified linear units improve

restricted boltzmann machines,” in Proc. Int’l Conf. on Ma-

chine Learning, 2010.

[16] T.-Y. Lin, A. RoyChowdhury, and S. Maji, “Bilinear CNN

models for fine-grained visual recognition,” in Proc. Int’l

Conf. on Computer Vision, 2015.

[17] J. Krause, T. Gebru, J. Deng, L.-J. Li, and L. Fei-Fei, “Learn-

ing features and parts for fine-grained recognition,” in Proc.

Int’l Conf. on Pattern Recognition, 2014.

[18] J. E. Cohen, T. Huster, and R. Cohen, “Universal lips-

chitz approximation in bounded depth neural networks,”

arXiv:1904.04861, 2019.

[19] J. Sánchez, F. Perronnin, and Z. Akata, “Fisher Vectors for

Fine-Grained Visual Categorization,” in Proc. Workshop on

Fine-Grained Visual Categorization (CVPRW), 2011.

[20] F. Perronnin and D. Larlus, “Fisher vectors meet neural net-

works: A hybrid classification architecture,” in Proc. Conf.

on Computer Vision and Pattern Recognition, 2015.

[21] Y. Gao, O. Beijbom, N. Zhang, and T. Darrell, “Compact

bilinear pooling,” CoRR, vol. abs/1511.06062, 2015.

[22] S. Kong and C. Fowlkes, “Low-rank bilinear pooling for

fine-grained classification,” in Proc. Conf. on Computer Vi-

sion and Pattern Recognition, 2017.

[23] S. Cai, W. Zuo, and L. Zhang, “Higher-order integration

of hierarchical convolutional activations for fine-grained vi-

sual categorization,” in Proc. Int’l Conf. on Computer Vision,

2017.

[24] Y. Cui, F. Zhou, J. Wang, X. Liu, Y. Lin, and S. Belongie,

“Kernel pooling for convolutional neural networks,” in Proc.

Conf. on Computer Vision and Pattern Recognition, 2017.

[25] N. Zhang, J. Donahue, R. Girshick, and T. Darrell, “Part-

based R-CNNs for fine-grained category detection,” in Proc.

European Conf. on Computer Vision, 2014.

[26] S. Huang, Z. Xu, D. Tao, and Y. Zhang, “Part-stacked CNN

for fine-grained visual categorization,” in Proc. Conf. on

Computer Vision and Pattern Recognition, 2016.

[27] K. J. Shih, A. Mallya, S. Singh, and D. Hoiem, “Part local-

ization using multi-proposal consensus for fine-grained cat-

egorization,” CoRR, vol. abs/1507.06332, 2015.

[28] D. Lin, X. Shen, C. Lu, and J. Jia, “Deep LAC: Deep local-

ization, alignment and classification for fine-grained recogni-

tion,” in Proc. Conf. on Computer Vision and Pattern Recog-

nition, 2015.

[29] M. Simon and E. Rodner, “Neural activation constellations:

Unsupervised part model discovery with convolutional net-

works,” in Proc. Int’l Conf. on Computer Vision, 2015.

[30] J. Krause, H. Jin, J. Yang, and F. F. Li, “Fine-grained recog-

nition without part annotations,” in Proc. Conf. on Computer

Vision and Pattern Recognition, 2015.

[31] Y. Yu, Z. Ji, Y. Fu, J. Guo, Y. Pang, and Z. Zhang, “Stacked

semantic-guided attention model for fine-grained zero-shot

learning,” CoRR, vol. abs/1805.08113, 2018.

[32] M. Sun, Y. Yuan, F. Zhou, and E. Ding, “Multi-attention

multi-class constraint for fine-grained image recognition,” in

Proc. European Conf. on Computer Vision, 2018.

[33] M. Jaderberg, K. Simonyan, A. Zisserman, and

K. Kavukcuoglu, “Spatial transformer networks,” in

Advances on Neural Information Processing Systems, 2015.

[34] T. Chen, W. Wu, Y. Gao, L. Dong, X. Luo, and L. Lin, “Fine-

grained representation learning and recognition by exploiting

hierarchical semantic embedding,” in Proc. ACM Int’l Conf.

on Multimedia, 2018.

[35] J. Fu, H. Zheng, and T. Mei, “Look closer to see better:

Recurrent attention convolutional neural network for fine-

grained image recognition,” in Proc. Conf. on Computer Vi-

sion and Pattern Recognition, 2017.

[36] J. Wang, Y. song, T. Leung, C. Rosenberg, J. Wang,

J. Philbin, B. Chen, and Y. Wu, “Learning fine-grained image

similarity with deep ranking,” in Proc. Conf. on Computer

Vision and Pattern Recognition, 2014.

[37] K. Hornik, “Approximation capabilities of multilayer feed-

forward networks,” Neural Networks, vol. 4, no. 2, pp. 251–

257, 1991.

1226

[38] S. Hochreiter, “The vanishing gradient problem during learn-

ing recurrent neural nets and problem solutions,” Int’l Jour-

nal of Uncertainty, Fuzziness and Knowledge-Based System,

vol. 6, no. 2, pp. 107–116, 1998.

[39] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlin-

earities improve neural network acoustic models,” in Proc.

ICML Workshop on Deep Learning for Audio, Speech and

Language Processing, 2013.

[40] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical eval-

uation of rectified activations in convolution network,”

arXiv:1505.00853, 2015.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification,” in Proc. Int’l Conf. on Computer Vision,

2015.

[42] X. Jin, C. Xu, J. Feng, Y. Wei, J. Xiong, and S. Yan, “Deep

learning with s-shaped rectified linear activation units,” in

Proceedings AAAI Conference on Artificial Intelligence,

2016, pp. 1737–1743.

[43] L. Trottier, P. Giguère, and B. Chaib-draa, “Parametric expo-

nential linear unit for deep convolutional neural networks,”

in Int’l Conf. on Machine Learning and Applications, 2017.

[44] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, and R. F.

Dumitru Erhan, Ian Goodfellow, “Intriguing properties of

neural networks,” in Proc. Int’l Conf. on Learning Repre-

sentations, 2014.

[45] L. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, L. Daniel,

D. Boning, and I. Dhillon, “Towards fast computation of cer-

tified robustness for ReLU networks,” in Proc. Int’l Conf. on

Machine Learning, 2018.

[46] K. Scaman and A. Virmaux, “Lipschitz regularity of deep

neural networks: Analysis and efficient estimation,” in Ad-

vances on Neural Information Processing Systems, 2018.

[47] M. Fazlyab, A. Robey, H. Hassani, M. Morari, and G. J. Pap-

pas, “Efficient and accurate estimation of lipschitz constants

for deep neural networks,” arXiv:1906.04893, 2019.

[48] J. Sokolić, R. Giryes, G. Sapiro, and M. Rodrigues, “Robust

large margin deep neural networks,” IEEE Transactions on

Signal Processing, vol. 65, no. 16, pp. 4265–4280, 2017.

[49] C. Anil, J. Lucas, and R. B. Grosse, “Sorting out lipschitz

function approximation,” in Proc. Int’l Conf. on Machine

Learning, 2019.

[50] H. Qian and M. N. Wegman, “L2-nonexpansive neural net-

works,” in Proc. Int’l Conf. on Learning Representations,

2019.

[51] Y. Tsuzuku, I. Sato, and M. Sugiyama, “Lipschitz-margin

training: Scalable certification of perturbation invariance for

deep neural networks,” in Advances on Neural Information

Processing Systems, 2018.

[52] G. J. Gordon, “Stable function approximation in dynamic

programming,” in Proc. Int’l Conf. on Machine Learning,

1995.

[53] H. Sagan, Advanced Calculus. Houghton Mifflin, 1974.

[54] A. Krizhevsky, “Learning multiple layers of features from

tiny images,” University of Toronto, Tech. Rep. 1 (4), 7,

2009.

[55] C. Wah, S. Branson, P. Welinder, P. Perona, and Be-

longie, “The Caltech-UCSD Birds-200-2011 Dataset,” Cal-

ifornia Institute of Technology, Tech. Rep. CNS-TR-2011-

001, 2011.

[56] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3D object rep-

resentations for fine-grained categorization,” in Proc. Int’l

Workshop on 3D Representation and Recognition, 2013.

[57] A. Khosla, N. Jayadevaprakash, B. Yao, and L. Fei-Fei,

“Novel dataset for fine-grained image categorization,” in

Proc. Workshop on Fine-Grained Visual Categorization

(CVPRW), 2011.

[58] S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and

A. Vedaldi, “Fine-grained visual classification of aircraft,”

arXiv:1306.5151, 2013.

[59] Kaggle, “https://sites.google.com/view/fgvc5/competitions/

fgvcx/ifood,” (last accessed: July 25, 2019).

1227

