
Multi-class Novelty Detection Using Mix-up Technique

Supritam Bhattacharjee

Indian Institute of Science

supritamb@iisc.ac.in

Devraj Mandal

Indian Institute of Science

devrajm@iisc.ac.in

Soma Biswas

Indian Institute of Science

somabiswas@iisc.ac.in

Abstract

Multi-class novelty detection is increasingly becoming

an important area of research due to the continuous in-

crease in the number of object categories. It tries to an-

swer the pertinent question: given a test sample, should

we even try to classify it? We propose a novel solution

using the concept of mix-up technique for novelty detec-

tion, termed as Segregation Network. During training, a

pair of examples are selected from the training data and an

interpolated data point using their convex combination is

constructed. We develop a suitable loss function to train

our model to predict its constituent classes. During testing,

each input query is combined with the known class pro-

totypes to generate mixed samples which are then passed

through the trained network. Our model which is trained to

reveal the constituent classes can then be used to determine

whether the sample is novel or not. The intuition is that if a

query comes from a known class and is mixed with the set

of known class prototypes, then the prediction of the trained

model for the correct class should be high. In contrast, for

a query from a novel class, the predictions for all the known

classes should be low. The proposed model is trained us-

ing only the available known class data and does not need

access to any auxiliary dataset or attributes. Extensive ex-

periments on two benchmark datasets, namely Caltech 256

and Stanford Dogs and comparisons with the state-of-the-

art algorithms justifies the usefulness of our approach.

1. Introduction

Deep learning approaches have achieved impressive per-

formance for object recognition and classification task [22]

[39] by using large networks trained with millions of data

examples. However, these networks usually work under a

closed set assumption, and thus try to classify each query

sample, even if it does not belong to one of the training

classes. For example, a neural network classifier trained to

classify fruits, might classify an input from a completely

different category, say “bird” into one of the fruit classes

with high confidence, which is unlikely to happen if a hu-

man does the same task. To make the systems more intelli-

gent and better suited to real-world applications [34] [26],

they should be able to understand whether the input belongs

to one of the trained classes before trying to classify it.

This problem is addressed in recent literature as out-of-

distribution detection [11], anomaly detection [46], nov-

elty detection [30] [1] and one-class classification [31] [36],

each having subtle differences between them. One class

classification rejects all the classes as outliers except the

concerned class. In out-of-distribution paradigm, the algo-

rithm determines whether samples are coming from other

data-sets or distribution. Such algorithms often require the

availability or prior knowledge about the out-of-distribution

data for proper functioning.

In this work, we address the multi-class novelty detec-

tion task [32], where given a query, the goal is to under-

stand whether it belongs to one of the training classes. This

is very challenging, since the novel data can come from the

same data distribution as that of the training data. Here, we

propose a novel framework, termed Segregation Network,

which utilizes the mix-up technique [42] for this task. The

network takes as input a pair of data points, and a third in-

terpolated data point which is generated by mixing them

together using a variable ratio. The goal is to determine the

constituent classes and the respective proportions by which

the two inputs have been mixed to generate the interpolated

data point. To this end, we design a novel loss function

called Constituency loss for our objective. Once the net-

work is trained, given an unknown query, we mix it with the

known class prototypes in a predefined proportion and pass

it through the network. Based on the network output, we

infer whether the query belongs to the known set of classes

or a novel class unknown to the system. The main contribu-

tions of the proposed approach are as follows:

• We propose a novelty detection framework, termed

as Segregation Network, which uses the mix-up tech-

nique, to detect whether the test query belongs to one

of the known classes or to a novel class.

• We design a novel loss function called Constituency

loss to train the proposed Segregation Network.

1400

• The proposed network can be trained only using the

available training data and does not require access to

any auxiliary or out-of-distribution dataset as done in

similar methods like [32]. This is advantageous as the

collection of auxiliary data is often difficult, expensive

and might be data dependent with respect to the known

class set.

• During testing, the proposed network compares the

unknown query with the set of known class proto-

types. We also develop an efficient version of our al-

gorithm, without any significant drop in performance,

which utilizes the softmax confidence outputs of the

pre-trained network.

• We perform experiments on two standard benchmark

datasets for novelty detection and the results obtained

compare favorably with the state-of-the-art method

which leverages auxiliary training data.

The rest of the paper is organized as follows. A brief

description of the related work in literature is provided in

Section 2. The proposed approach is discussed in Section 4

and the experimental evaluation is described in Section 5.

The paper ends with a brief discussion and conclusion.

2. Related Work

The foundation of this work is based on two threads

of machine learning research, namely novelty detection

algorithm and mix-up based learning techniques.

Novelty Detection: This problem is an active area of

research for detecting outliers in data. There has been

both statistical [40] [44] [20] [13], distance based [21]

[18] [14] and deep learning based approaches [33] [2]

[23]. Statistical methods generally focus on trying to

fit the distribution of the known data using probability

models [9]. Distance based algorithms usually use some

transforms and then identify novel classes by thresholding

the distance with known examples. The assumption is

that the known class examples will be much closer to the

known class representatives than the unknown ones in the

transformed space. A relatively recent work in this direc-

tion is Kernel-Null Foley-Sammon Transform (KNFST)

[7] for multi-class novelty detection. Here, the same class

points are projected into a single point in the null space,

and during testing, the distance with respect to the class

representative is thresholded to get a novelty score. This

algorithm was improved to handle incremental incoming

classes and subsequently update its novelty detector in [25].

Deep learning based approaches such as Open-max [3]

fits a Weibull-distribution to determine the novelty. The

generative version of this approach was proposed in [15],

where unknown samples were generated. Several one-class

deep learning based novelty detection have been proposed

in recent literature [35] [31] [36]. The work in [32] designs

a novel training paradigm where a reference set is used to

learn a set of negative filters that will not be activated for

the known category data. To this end, they design a novel

loss function called membership loss. Masana et al. [27]

propose a method to improve the feature space by forming

discriminative features with contrastive loss for this task.

Out-of-Distribution detection algorithms [11] [24] [43] also

addresses a similar task, having subtle difference with the

problem addressed in this work. These approaches assume

that the novel or out of distribution data is strictly outside

the data manifold on which the base network is trained.

Thus, novelty detection is in general more challenging than

out of distribution detection [32].

Mixing: Learning algorithms involving interpolation

or mix-up between classes has been recently introduced

in the community. In one of the early works, Bengio et

al. [4] employed mixing technique to better understand the

underlying factor of disentanglement in data. Recently,

[42] proposed to improve the classification task by interpo-

lating between classes. In [41], sound recognition is done

by feeding data between class (or mixed up) samples to

improve the performance. Another work along similar lines

is proposed in [45]. While the mentioned works interpolate

in the input space, [5] interpolated in the latent space of

auto-encoders to generate images with smooth transition

from one class to another using adversarial regularizer.

Several other works try to interpolate or mix data from

different classes in the the latent space of auto-encoders

[12] [28] [17] [8] [29] for different purposes and using

various methods. In contrast, in our work, we interpolate in

the feature space to train our model.

3. Motivation

The basic idea behind the development of the proposed

algorithm is provided in Figure 1, where we highlight the

training (top row) and testing (bottom row) strategies. The

different color schemes indicate the different categories of

data. The bi-directional arrow indicates that samples from

these two categories are being used to generate the interpo-

lated data point. The desired prediction of the trained model

is shown in a color-coded bin.

During training, the proposed network aims to segregate

the interpolated point with respect to the two inputs. For the

example shown in Figure 1(a, b), the interpolated point lies

close to the orange class, since higher mixing coefficient

has been used for that class. So the model should ideally

predict the constituent classes (as shown in the color coded

bins) with higher weightage to the orange class. In Figure

1(c), the interpolated point should be predicted to belong to

only the orange class, as two samples from the orange class

1401

Figure 1. Illustration showing the motivation behind our proposed

approach during the training and testing stage.

have been used to generate the interpolated point.

During testing (as shown in bottom row), we generate the

interpolated point using the query (denoted as gray star) and

the class prototypes of the known classes, and try to predict

the constituent classes with respect to the two input points.

We give a larger weightage to the query while generating the

interpolated point. In Figure 1(d,e), since the query does not

belong to any of the known class set, the prediction of the

network should consist of only the known class mixing co-

efficient (shown in the color bins). In case the query comes

from the known set (yellow class in Figure 1(f)), the predic-

tion of our network should ideally reflect that with a high

value in the color coded bin. Thus the output of the network

can be used to determine whether the input belongs to one

of the known classes or to a novel class.

4. Proposed Method

In this section, we describe the network architecture

of the proposed Segregation Network(SN), the novel loss

function used to train the model and the training and testing

protocol. First, we describe the notations used.

Notations: Let the input data be represented as

Xtr ∈ R
dt×N , N being the number of training sam-

ples and dt being its feature dimension. Let the one-hot

labels be denoted as Ltr ∈ R
K×N , where K is the number

of training or known classes. We define the known class

set to be Cs = {C1, C2, ..., CK}, and thus |Cs| = K.

In the general scenario, the testing data can come from

the seen classes or from unseen/novel classes, for which

no information is available to the system. During testing,

given a query, the goal is to determine whether it comes

from set Cs or not, i.e. whether it belongs to a seen class

or a novel class. Classifying the known examples into

its correct class is not the focus of this work and can be

done using the base classifier trained using the training data.

Base Classifier and Features: Given the training

data, a base classifier is trained to classify an input query

into one of the given classes. Since the classifier is

now required to work in a general setting, the input can

potentially come from an unseen class, and thus should not

be classified by the classifier into one of the seen classes.

Given an input, the novelty detector is designed to take

the output features of the base network (before they are

classified) and decide whether the input belongs to one of

the seen classes or to a novel class. If it belongs to a seen

class, it can be sent back to the classifier for classification.

The proposed novelty detection framework is general and

can work with any classifier model. In this work, we use

pre-trained AlexNet [22] and VGG16 [39] architecture as

the base classifier. These networks are fine-tuned on the

respective known class datasets and the extracted features

are normalized and given as input to our network. Now, we

describe the details of the Segregation Network.

4.1. Segregation Network

The proposed network consists of three fully connected

(fc) layers with ReLU activations and dropout between each

layer except the final fc layer. The final layer is of dimen-

sion K (number of seen classes). Sigmoid is used as the

final layer activation function as the output of Sigmoid is

between [0, 1], which can be interpreted as the proportion of

the mixing classes in our case. In our design, the network

has a 512−1536−256 architecture, with the numbers denot-

ing the length of each fc layer. We use the Adam optimizer

with a learning rate of 0.001 for training our model. An

illustration of the proposed network is shown in Figure 2.

The network takes as input a triplet set of data samples

{xi, xj , xk}, where xi, xj are data from the training set and

xk is the mixture obtained by mixing xi and xj in some

proportion. Let us denote the output of the first fc layer,

which is shared by all three inputs, as {x1

i , x
1

j , x
1

k}. Then

{x1

i , x
1

j , x
1

k} is concatenated together to form x1

ijk which is

then passed forward through the rest of the network. In our

implementation, we have used features from the fine-tuned

AlexNet [22] or VGG16 [39] deep networks, which are of

very high dimension. Thus, the first fc layer serves as a

dimensionality reduction layer, the output of which is then

concatenated and passed through the rest of the network

structure. The final output of the network after passing

through the Sigmoid activation function is denoted as u.

Training the model : The network is trained such

that given an interpolated input, it will decouple/segregate

the input data into its constituents. This property is ex-

ploited in the following way. Given a pair of feature vectors

{xi, xj}, we perform convex combination on this pair to

produce xk , where xk = αxi + (1− α)xj , α ∈ (0, 1). We

1402

Figure 2. Illustration of the proposed network. The network accepts feature vectors xi belonging to C1 (of “Birds” category) and xj

belonging to C2 (of “Chimpanzee” category) to create hybrid data in the feature space, xk. All these three vectors < xi, xj , xk > are first

passed through the first fully connected layer of the network to be transformed into a lower dimensional vector before being concatenated

together to pass it through the rest of the network. The final activation layer is kept Sigmoid so that the output of network u can be used to

predict the mixture ratio. We train the model using our proposed novel Constituency loss function.

feed these three feature vectors {xi, xj , xk} to the network.

The output of the network is a K dimensional vector from

the final Sigmoid layer u = [0, 1]K . Since the output

is passed through the Sigmoid activation function, each

element of the K-dimensional vector is bounded between

[0, 1]. In addition, each element denotes the proportion by

which the mixed sample xk has been constructed from that

training class. For example, an output of [0, 0.6, 0.4, 0, 0]
(i.e. there are five known classes) indicates that the mixed

sample xk has been constructed as xk = 0.6xi + 0.4xj

where xi ∈ C2 and xj ∈ C3. Given xk = αxi+(1−α)xj ,

the following cases may arise,

• If, xi ∈ Cp and xj ∈ Cq , where p 6= q, and both

(Cp, Cq) ∈ Cs i.e., belongs to the seen classes set, we

should get the output of the model such that, u[p] = α

and u[q] = 1 − α, while u[r] = 0 for r 6= {p, q}. We

consider such a pair to be a non-matched pair as the

interpolated point xk lies somewhere in between the

two classes based on the value of α.

• If, both xi, xj ∈ Cp, Cp ∈ Cs, the network should

ideally output u[p] = 1 and u[r] = 0 for r 6= p.

This is because a mixed element constructed from two

data items of the same class should ideally belong to

the same class also. We consider such a pair to be a

matched pair.

• During testing in general scenario, we pair the query

sample with class prototypes of the known classes, and

so a third case may arise if the query belongs to a novel

class. Here, since one of the two inputs to the net-

work is seen, only the output node corresponding to

that class should be non-zero and equal to the propor-

tion of this class in the generated mixture. We do not

explicitly train the network for this scenario, since we

Algorithm 1 Algorithm for training the Segregation Net-

work

1: Input : Xtr is the input data with their provided labels

Ltr ∈ Cs.

2: Output : Trained Segregation Network model to detect

novel samples.

3: Initialize : Initialize the network parameters of Segre-

gation Network. Extract the fine-tuned features for Xtr

using AlexNet [22] or VGG16 [39].

4: Randomly generate the mixing coefficient value α.

5: Randomly take pairs of training data xi, xj ∈ Xtr to

construct xk using the mixing coefficient α

6: Feed-forward the triplet data pair (xi, xj , xk) through

the network.

7: Compute the constituency loss Lcons and back-

propagate it back to train the network.

do not assume any auxiliary dataset. So, we consider

only the first two cases for training.

Note that as the final activation function is the Sigmoid layer

and not the standard softmax, total sum of u may not be

equal to 1. This is important, since if the input belongs to a

novel class, the network will only consider the mixing pro-

portion of the known class. So the proportion of unknown

class in the mixture will be ignored and thus the sum will

not be equal to 1.

Our network needs to be trained in such a way that the

value of u peaks at the position of the constituent classes

and also gives the proper mixing proportions. Since, we do

not have the softmax output, we cannot use cross-entropy

loss function to train this model. In addition, cross-entropy

loss function tries to maximize the probability of a sample

to belong to a particular class which goes against our

1403

desired objective, where a given example can come from

outside the known class set. Hence, we design a novel loss

function termed as Constituency loss (Lcons) to train our

model which we describe next.

Constituency loss: This loss ensures that the output

of the Segregation Network, {u[r], r = 1, ...,K} gives

positive values for only those classes which has been mixed

to create xk. Thus, the network is expected to output not

only the correct proportion over the mixing class set m, but

also give zero output over the non-mixing class set nm.

Based on this requirement, the loss function can be written

for the m and nm classes as follows

Lcons =
∑

r∈nm

u[r]2 + g ∗
∑

r∈m

(u[r]− β[r])2 (1)

where, β denotes the mixing coefficient vector which has

zeros for the non-mixing classes, and values of α and (1−α)
in their relevant places for the mixing classes. Let us de-

fine S0 = {β[r] ∈ R | β[r] = 0} and S 6=0 = {β[r] ∈
R | β[r] 6= 0} denote the zero element and non-zero ele-

ment sets. The set S0 denotes the sparse set of β[r] output

for the non-mixing classes, while the S 6=0 is for the classes

used to form xk. The weight g > 1 plays a significant role

in training the model as shown in the ablation studies. This

factor is important since |S0| >> |S 6=0|, where |.| denotes

the cardinality of a set. Hence during training, we penal-

ize the errors in wrongly predicting the value of {α, 1− α}
much more severely as compared to the incorrect prediction

of the zero elements. In our implementation, we found the

best value of g to be between 1000− 2000 in all our exper-

iments.

4.2. Testing Scenario

As mentioned earlier, we assume that a base pre-trained

classifier has been fine-tuned on the training classes with a

softmax output layer. Here, it has been taken as the AlexNet

[22] or VGG16 [39], from where the features are extracted.

In the general testing scenario, the test query can come from

one of the seen classes or from a novel class. Given a test

query, we consider the Top-N classes which get the highest

output scores from the classifier, i.e. the possibility of the

query belonging to one of these classes is high. The goal

of the Segregation Network is to consider each of these top

classes, and verify whether the query actually belongs to

one of those classes. Taking the top few classes is intuitive

since (1) if the query belongs to a seen class, its score is

usually high and (2) it reduces the computation required for

novelty detection using the proposed Segregation Network.

If the query is from a novel class, all retrieved classes are

obviously wrong. Here we use training class centers, µr

where r ∈ {1, 2, 3, .., N}, where (N < K) as the prototype

exemplars. For each query, q, a set of interpolated points is

Figure 3. The procedure to compute the membership score for a

given query q is shown here. The set of triplet points {q, µr, xr}∀r
is fed to the network and the prediction is represented as a square

matrix. (a) and (b) shows two possible cases when the query q

comes from the known and novel set respectively. The deeper

shade signifies a higher value than the lighter color in the matrix.

generated as {q, µr, xr}, where xr = (1−α)q+αµr, which

is then is passed through the proposed network. The predic-

tion using all exemplar points {µr}
N
r=1

can be viewed as a

square matrix (shown in Figure 3) whose each row signifies

the prediction values when paired with a particular cluster

center.

The mixing coefficient for the prototype exemplars is

kept low while feeding to the model. In other words, the

mixing coefficient is kept high for the incoming test data.

This is because of the following reasons

• If the query data belongs to one of the known classes,

the high α value for the query example would produce

a high u[r] value for the correct known class as shown

in Figure 3 (a).

• If the query data belongs to an unknown class, the low

(1− α) value used for the prototype exemplars forces

the network output u[r] to be low for all the (known)

classes as shown in Figure 3 (b).

We define the membership score as the average of the

maximum score in each row. Membership score can be

thought of as the likelihood of belonging to the set of known

classes. Thus, for a query coming from the known classes,

the membership score should be higher as compared to the

membership score of a query coming from the novel class

set. As seen in Figure 3(a), the individual maximum values

of the prediction matrix per row is higher (marked with a

deep green shade) and so the membership score (the aver-

age value) is higher. When the query belongs to the novel

set, as seen in Figure 3(b), the membership score would

come out to be lower.

5. Experiments

In this section, we evaluate the proposed Segregation

Network (SN) and compare against several state-of-the-art

approaches. We describe in details the datasets considered

for our experiments and the testing protocol. This is fol-

1404

lowed by ablation studies to better understand the proposed

approach.

5.1. Datasets Used and Testing Protocol

Here, we report results on two benchmark datasets,

namely Caltech 256 [16] and Stanford Dogs [19].

Caltech 256 dataset [16]: This dataset is a standard

dataset for visual recognition consisting of objects spread

over 256 diverse categories. It consists of 30, 607 images

with a minimum of 81 to a maximum of 827 image exam-

ples per class. As per the protocol in [32], we took the first

128 classes as known and rest as unknown.

Stanford Dogs dataset [19]: This is a fine grained

dataset which has been curated from the ImageNet dataset

and consists of images of different breeds of dogs of 120
categories. It consists of 20, 580 images. We consider the

first 60 classes, sorted alphabetically as known. The final

testing was performed on the remaining 60 classes, similar

to the protocol followed in [32].

State-of-the-art Approaches in Literature: We jus-

tify the effectiveness of our proposed model for the task

of multi-class novelty detection by comparing against the

following state-of-the-art approaches: (1) Finetune [39]:

The fine-tuned network output is taken and thresholded

to determine whether a query belongs to the known or

novel class; (2) One-class SVM [37]: All known classes

are considered during training the SVM. During testing

the maximum SVM score is considered for determining

whether a data-point is novel or not. (3) KNFST [7]:

The deep features are extracted and normalized and the

KNFST algorithm is implemented to project all the training

samples into the null space, where all examples from a

particular class collapse to a single point. Finally, the

distance of a query from the training class in the null space

is thresholded to determine whether it is novel or not; (4)

Local KNFST [6]: This method is similar to that in [7],

but focuses only on the training images most similar to the

given query for determining its novelty score; (5) Open-

max [3]: The feature embedding of the penultimate layer

of a trained network is taken and mean activation vectors

are determined to fit in the Weibull distribution to finally

generate a probability vector of dimension k + 1, where

k is the number of classes. (6) K-extremes [38]: VGG16

features are extracted and the top 0.1 activation index is

used to get the extreme value signatures; (7) Finetune

(c + C) [32]: The network is trained on additional classes

from a reference dataset which has examples other than

those present in the main dataset; and (8) Deep Transfer

Novelty (DTN): The state-of-the-art algorithm proposed in

[32], where an external dataset as reference data is used to

learn negative filters which will not get activated for any of

the data from the known categories. The proposed model

in [32] is trained by using a novel membership loss function.

Evaluation Protocol: We consider area under the re-

ceiver operating characteristic curve (AUC) [10] as the

evaluation criteria. AUC is the standard metric used for

evaluating these approaches as done in [32].

5.2. Experimental Results

We evaluate our algorithm by using the features ex-

tracted from the pre-trained AlexNet [22] and VGG16 [39]

networks as done in [32]. Our results are compared against

the current state-of-the-art baseline methods and also eval-

uated on the same set of features. The results for the other

approaches are directly taken from [32]. The results as re-

ported in Table 1 show that the proposed model (SN) gives

the best result in three out of four cases. Our method with

VGG16 features has convincingly outperformed the method

in [32] with a margin of 7.9% for Stanford Dogs [19] and

1.3% for Caltech 256 [16] datasets. For AlexNet features, it

beats all the other approaches for Stanford Dogs and com-

pares favorably for Caltech 256 dataset. One important

point to note is that the proposed framework does not re-

quire any external or auxiliary datasets as used in [32] to

perform novelty detection. This makes our approach more

suitable for real-world applications. Since it does not re-

quire any auxiliary dataset, it is also computationally lighter

than [32] as we do not need to train any extra network mod-

ule. We also display the novelty detection results on few

test example images from the Caltech 256 dataset in Figure

4. We show successful (a,d) and failure (b,c) cases in Figure

4. Successful cases are the ones where a query known (or

unknown) sample is classified to belong to the known (or

novel) set.

Table 1. Comparison of the proposed framework (SN) to the state-

of-the-art methods using the AUC of the ROC curve evaluation

metric. Our algorithm gives convincing results compared to the

state-of-the-art Deep Transfer Novelty (DTN), without the use of

any extra reference dataset.

Dataset Stanford dogs Caltech 256
VGG16 AlexNet VGG16 AlexNet

FineTune[39] 0.766 0.702 0.827 0.785
One-Class SVM [37] 0.542 0.520 0.576 0.561

KNFST pre [7] 0.649 0.619 0.727 0.672
KNFST [25] [7] 0.633 0.602 0.743 0.688

Local KNFST pre [6] 0.652 0.589 0.657 0.600
Local KNFST [6] 0.626 0.600 0.712 0.628

K-extremes [6] 0.610 0.592 0.546 0.521
OpenMax [3] 0.776 0.711 0.831 0.787

Finetune(c+C) [32] 0.780 0.692 0.848 0.788
DTN [32] 0.825 0.748 0.869 0.807

Proposed SN 0.904 0.773 0.882 0.751

1405

Figure 4. We display some images from the testing set of the Cal-

tech 256 dataset whose novelty has been determined by our SN

algorithm. We show cases where our algorithm has been found to

be successful (a,d) and also some unsuccessful cases (b,c). The

four cases can be described as (a) known example classified as

known, (b) unknown classified as novel, (c) known classified as

novel and (d) unknown classified to novel set.

Figure 5. Performance (AUC) of the proposed SN when the num-

ber of class prototypes of known classes (N) which is compared

with the query is changed. We observe that there is a graceful de-

crease in AUC when the value of N is slowly decreased for both

the datasets using the different feature representations. This natu-

rally leads to a more efficient version of our algorithm.

5.3. Analysis and Observation

We perform extensive analysis to better understand the

proposed framework and highlight the salient points.

Effect of number of top classes used for novelty

computation: During testing, we compare the query

element with all individual class mean prototypes of the

known set for determining whether it is novel or not. The

results are reported in Table 1 when the prototypes of all

the known classes (K) are used during testing. Here, we

investigate the effect of taking the prototypes of only the

top-N classes (as given by the softmax values from the

base network, namely AlexNet and VGG16) and provide

the results in Figure 5.

We observe that there is a very gradual monotonic de-

crease in the performance of our model as the value of N is

decreased from 60 to 10. This helps us to develop a com-

putationally lighter version of our algorithm where we get

Figure 6. Average class-wise membership scores for the (a) Stan-

ford Dogs and (b) Caltech 256 dataset using the features of the

AlexNet [22] and VGG16 [39] network. The first 60 & 128 cat-

egories for the two datasets in (a) & (b) are considered in the

known class set while the remaining are considered to form the

novel classes. We observed that the class-wise membership score

for the known class set in general are higher than that of the novel

class examples for both the datasets. This clearly demonstrates the

effectiveness of our proposed method.

satisfactory performance even when comparing the query

with only the top few class prototypes. This becomes es-

pecially useful when the number of known classes becomes

very large.

Analysis of class-wise membership score: To better un-

derstand why our model is working, we plot the average

class-wise membership score for the images of the seen and

unseen categories for the (a) Stanford Dogs (first 60 cate-

gories as known) and (b) Caltech 256 dataset (first 128 cat-

egories as known) in Figure 6. Two important conclusions

can be drawn from here - (1) the difference in membership

score between the seen and novel sets is more pronounced

in case of the Stanford Dogs dataset than the Caltech 256

dataset. This effectively means that our algorithm should

perform better for the Stanford Dogs dataset which is fur-

ther reflected in Table 1. (2) The better performance of the

VGG16 model over its AlexNet counterpart (as shown in

Table 1) can be explained due to the fact that the member-

ship profile for VGG16 has higher peaks and lower troughs

than AlexNet. A higher peak and lower trough leads to a

better margin for error which results in more ease of deter-

mining whether a class is novel or not.

Varying the number of prototypes per class: We have

used the mean vector as the class prototype for each class

in all our experiments. We conduct experiments on the

Stanford Dogs dataset to analyze here how the proposed

framework performs when each known class is instead rep-

resented by a set of multiple feature vectors instead of a

single mean vector. The set of representative feature vectors

for each class can be determined by applying k-means algo-

rithm on each category and then selecting the subsequent

cluster centers which have been formed. Performance in

Table 2 show that there is a very slight increase in perfor-

1406

Table 2. AUC performance of the proposed method SN with in-

creasing number of prototypes taken for each known class during

testing on the Stanford Dogs dataset.

No of prototypes per class
1 2 3 5

VGG16 0.904 0.913 0.913 0.914
AlexNet 0.773 0.773 0.775 0.782

Figure 7. The effect of α on the performance (AUC) for (a) Stand-

ford Dogs and (b) Caltech 256 dataset. Notice that as the value of

α is increased the AUC performance drops significantly while the

performance saturates at lower values of α.

mance with the increase in the number of prototypes. We

thus select a single prototype to evaluate our model during

the testing phase.

Effect of mixing coefficient α: Our model is trained by

randomly sampling the value α (0 ≤ α ≤ 1) and then as-

signing it to the pair of points. The purpose of the network

is to correctly predict the mixing coefficient. During test-

ing, we set α to a fixed predefined value. In Figure 7, we

report the AUC performance of our model for different val-

ues of α and observe that the α value of the cluster center

µ should be kept low to get better performance. The rea-

son for this being that, the interpolated point xk, formed by

αµ + (1 − α)q with, q being the incoming query, and µ

being the class prototype, is much closer to q for a small

value of α. Thus if q and µ belong to the same class then

the interpolated point should also belong to the same class

leading to the trained model outputting a higher prediction

value for that particular class. Conversely, if q belongs to a

novel class altogether, the interpolated point should be far

apart from µ leading the network to give a small value cor-

responding to that class.

Softmax vs Membership Scores: We analyze the Softmax

score along with its membership value for few test cases in

Figure 8 for the Stanford Dogs and Caltech 256 dataset re-

spectively. From the figure, it is clear that while the softmax

values are overly confident signifying that the image possi-

bly belongs to the known set, our membership score being

low helps to determine that it is a novel sample.

Effect of loss weighting factor g: One of the critical de-

sign parameters of our algorithm is the choice of the hyper-

parameter g in equation (1). We observe from Figure 9 the

training value loss profile for different values of g for Stan-

Figure 8. We report the softmax (in blue) and membership score

(in orange) for some example test cases from the Stanford Dogs

(top row) and Caltech 256 (bottom row). The red (or yellow) bor-

dered images come from the novel (or known) class set. Notice

that for a novel query, while softmax values are overly confident,

our membership score is low signifying that it is a novel sample.

ford Dogs dataset when using the VGG16 features. From

the figure, we can draw the conclusion that having a weight

of 1 i.e., giving equal importance to the zero and non-zero

loss gives poor result as the network only learns to out-

put values close to zero. A higher weight assigned to the

non-zero element can help to effectively train our model as

shown in Figure 9, thereby reducing both the losses.

Figure 9. The plot of the zero-element, non-zero element and total

loss with epoch for different values of g in equation (1) on Stanford

Dogs Dataset.

6. Conclusions

In this paper, we have developed a novel framework for

multi-class novelty detection which works using the con-

cept of mix-up technique. We have designed a novel con-

stituency loss for training the proposed model. Experimen-

tal evaluations have shown that the model performs favor-

ably with the current state-of-the-art, even without having

access to any extra auxiliary dataset. We have also de-

veloped an efficient version of our algorithm, without any

significant drop in performance, which utilizes the softmax

confidence outputs of the pre-trained network.

1407

