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Abstract

Person re-identification is an important yet challenging

problem in visual recognition. Despite the recent advances

with deep learning (DL) models for spatio-temporal and

multi-modal fusion, re-identification approaches often fail

to leverage the contextual information (e.g., pose and illu-

mination) to dynamically select the most discriminant con-

volutional filters (i.e., appearance features) for feature rep-

resentation and inference. State-of-the-art techniques for

gated fusion employ complex dedicated part- or attention-

based architectures for late fusion, and do not incorpo-

rate pose and appearance information to train the back-

bone network. In this paper, a new DL model is proposed

for pose-guided re-identification, comprised of a deep back-

bone, pose estimation, and gated fusion network. Given a

query image of an individual, the backbone convolutional

NN produces a feature embedding required for pair-wise

matching with embeddings for reference images, where fea-

ture maps from the pose network and from mid-level CNN

layers are combined by the gated fusion network to gen-

erate pose-guided gating. The proposed framework al-

lows to dynamically activate the most discriminant CNN

filters based on pose information in order to perform a

finer grained recognition. Extensive experiments on three

challenging benchmark datasets indicate that integrating

the pose-guided gated fusion into the state-of-the-art re-

identification backbone architecture allows to improve their

recognition accuracy. Experimental results also support

our intuition on the advantages of gating backbone appear-

ance information using the pose feature maps at mid-level

CNN layers.

1. Introduction

Person re-identification is an important function required

in many computer vision applications such as video surveil-

lance, search and retrieval, pedestrian tracking for au-

tonomous driving, and multi-camera multi-target tracking.
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Figure 1. Illustration of the proposed DL architecture for pose-

aligned re-identification. The pose networks learns the pose re-

lated features and the gated fusion network uses the pose features

to dynamically select the relevant appearance features and assist

the backbone network to learn the pose related appearance cues

for the embedding space.

Given a query image of an individual, re-identification can

be seen as a problem of ranking the similarity of all the pre-

viously observed images in the gallery. Generally, the aim

of re-identification is to recognize individuals tracked over

a set of distributed non-overlapping cameras, under the as-

sumption that an individual’s overall appearance preserved

in all the viewpoints, i.e., no one changes the clothing. De-

spite of years of arduous efforts [17, 14, 11, 2, 3, 66, 39,

29, 60, 31, 32], person re-identification remains a challeng-

ing task due to the non-rigid structure of the human body,

the different viewpoint/pose with which a pedestrian can be

observed, and the variability of capture conditions (e.g., il-

lumination, scale, motion blur).

State-of-the art approaches for person re-identification

typically learning global appearance features in an end-to-

end fashion through various metric learning losses [10, 33,

56]. Siamese or triplet-loss CNNs are often used to learn

an embedding, where similar image pairs (with the same

identity) are close to each other, and dissimilar image pairs

(with different identities) are distant from each other [56].

More recent approaches try to incorporate spatial informa-
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Figure 2. Examples of the misalignment challenge characterizing

re-identification in two camera views: (a-c) due to inaccurate per-

son detection, (d-f) due to pose/viewpoint variations.

tion about the human body into the re-identification pro-

cess by first learning the local representations of prede-

fined body parts, and then, aggregating the local and global

representations to achieve robust appearance based fea-

tures [50, 51, 67, 42, 7, 21, 55, 69].

This paper introduces a person re-identification frame-

work able to co-jointly learn feature embedding that in-

corporate relevant spatial information from human body

appearance with pose/viewpoint information. Figure 1

presents the overall architecture of the proposed pose-

aligned re-identification system. It consists of two parallel

streams, an appearance learning stream (backbone network)

and a pose estimation stream (pose network) which serves

as a context-based gating mechanism for re-identification.

These streams are combined by the gating fusion network

to integrate human body pose information into the metric

learning process.

Most related to our proposed approach are the part-based

models, which follow a late fusion approach, i.e., the lo-

cal feature representations are fused together at the end of

the network, which actually undermines the local represen-

tations throughout the networks [50, 51, 67, 64, 41, 65].

Although these approaches have achieved a high-level of

accuracy, they suffer from misalignment which can be at-

tributed to pose/viewpoint variation and person detection

error, which are very common in the surveillance videos.

A typical scenario of misalignment is depicted in Figure 2.

Feature aggregation approaches are commonly proposed

to address the misalignment issue. These approaches in-

clude weighing [50, 67, 64] or maximum pooling as well

as some advance techniques such as bilinear pooling [15]

or gated recurrent unit (GRU) [12]. In particular, gating

mechanisms allows for multiplicative interaction between

input features and context gate features. During infer-

ence, this mechanism allows to dynamically increase the

contextual information. Gating functions introduce an at-

tention mechanism which can eventually help dynamically

address misalignment issues by focusing on parts, rather

than whole image. Given input image, most of the gating

approaches [56, 57] dynamically select the most relevant

units, layers, or other components in the main backbone

(appearance-based) network. Gating features usually origi-

nate from a small sub-module that is integrated between dif-

ferent layers of the backbone network. These sub-modules

are configured and trained within the network, and thereby

allow for making decisions locally specific to the compo-

nents being configured. Although these techniques are suit-

able for gated fusion, they employ complex dedicated part-

or attention-based architectures that perform late fusion of

the contextual information. Furthermore, they do not incor-

porate or propagate the contextual information through the

backbone network during the metric learning process. In

our proposed framework, the gated fusion network learns

to co-jointly propagate pose and appearance information

from mid-level CNN layers to the output, without additional

mechanisms in the backbone network. During the training

phase, the mechanisms inside the gating fusion network in-

creases the contextual information that is back propagated

gradients corresponding to the amplified local similarities,

encouraging the lower and middle layers to learn filters to

extract more locally similar patterns.

In this context, an important consideration is the best

layer of a backbone network to integrate contextual pose-

guided information. It is arguably better to fuse feature

representations at the middle-layer. Indeed, lower layers

of a deep neural network usually extract low-level features,

whereas mid-level layers extract more abstract concepts (at-

tributes) such as the parts or more complicated texture pat-

terns. Features from these layers may be more compat-

ible for integration with abstract structural pose informa-

tion. Moreover, mid-level features are more informative

than higher-level ones, and these finer details may be nec-

essary for accurate pair-wide similarity matching.

Hence, in the proposed framework (Figure 1), pose-

guided gating fusion is proposed to dynamically select the

more informative portion of an individual’s image from the

mid-level layers of the backbone network. Given a query

image, feature maps from the pose network and from mid-

level CNN layers of the backbone network are combined by

the gated fusion network to generate pose-based gates. This

enhances local similarities along the higher layers, so that

the backbone network propagates more relevant features to

the higher-level layers.

Experimental results on three challenging benchmark

datasets for re-identification show that the proposed gating

fusion technique can effectively learn to gate informative

pose-related features from network, and outperforms state-

of-the-art methods upon which it is applied. In addition,

our experiments indicate that the gated fusion at the middle

layers of the networks are more effective than early or late
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fusion. This was expected, as the purpose of adding pose

features in the re-identification process is to force the ap-

pearance embedding network to pick more relevant features

and learn a more refined representation in the embedding

space.

The main contributions of the paper are: (1) we pro-

pose a new pose-aligned re-identification framework with

dynamic body pose-guided appearance feature learning and

selection with a gating mechanism to address the misalign-

ment issue; (2) we provide intuitive and experimental an-

swers to a major research question about which layers are

the proper ones to apply the gating mechanism; and (3) Ex-

perimental analysis on three benchmark datasets indicates

that concerting pose feature into the state-of-the-art back-

bone networks assist to further increase their recognition

accuracy.

2. Related Work

Classical approaches for re-identification can be re-

grouped into two major categories. One family of meth-

ods focused on searching of the most discriminative fea-

tures and their combination so to design a powerful descrip-

tor (or signature) for each individual regardless of the scene

[14, 11, 2, 3, 66, 39, 29, 60, 31, 32] while the second fam-

ily of the methods are trying to learn a discriminate dis-

tance metric learnt from the data in order to close the gap

between a person’s different feature [24, 40, 73, 38]. Like

other computer vision systems that rely on the hand-crafted

features, the former methods suffer from poor generaliza-

tion, while the latter suffer from computational complex-

ity when the number of cameras or individuals in the scene

increases over time. Similar to other computer vision ap-

plications, deep learning methods for re-identification have

been growing significantly and outperformed the classical

methods [1, 19, 56, 8, 16, 10, 33]. This section provides an

overview of the state-of-the-art re-identification including

pose information and gated fusion methods.

Conventional re-identification using pose. Due to non-

rigid structure of the human body, appearance models that

consider individual parts or the pose of the body generate

superior results compared to the holistic approaches. This

observation was first exploited in symmetry-driven accu-

mulation of local features by using two axes dependent on

the body’s pose to obtain pose invariant feature represen-

tation [14]. Similarly, [11, 2, 3] use a fine-grained pose

representation to match features coming from a number of

well-localized body parts and weighing them based on their

salience. In [13], a pose-aware multi-shot matching tech-

niques is proposed where efficient use of multi-shot match-

ing is conducted based on the target pose information.

Deep re-identification. Deep re-identification meth-

ods originate from Siamese networks idea [4].The first at-

tempt to use deep learning for re-identification was based

on using three Siamese sub-networks for feature learning

introduced in [62]. Following that direction various deep

CNN based re-identification approaches has been intro-

duced [1, 19, 56, 8, 16] to learn features in an end-to-end

fashion through various metric learning losses such as con-

trastive loss [56], triplet loss [33], improved triplet loss [10],

quadruplet loss [8], and triplet hard loss [19]. Most of

these approaches are holistic, thereby learning a global fea-

ture representation without explicitly considering the spatial

structure of the person. Unlike these methods, our proposed

network is able to capture and propagate fine-grained body

pose related details to generate a more robust feature em-

bedding.

Deep re-identification using pose. More recently,

incorporating contextual information into a CNN-based

matching has proven to be successful to increase the

re-identification accuracy. In this context, most of

the re-identification approaches rely on pose-guided ap-

proaches [50, 51, 67, 64, 41, 65, 46] that detect body parts

by using an off-the-shelf pose estimator. For instance,

[50, 51, 64, 67] use pose-estimator to detect normalized part

regions from an image, and then exploits different fusion

techniques to fuse the features extracted from the original

images and the part region images. In [46], confidence maps

generated by the pose estimator is used as an additional

channel to the input image. There are some attention maps

based approaches [7, 21, 55, 69, 65, 36, 61] which are sup-

posed to attend informative body parts, however they are es-

timated by the same backbone feature extractor network and

hence, they often fail to produces reliable attention maps.

Alternatively, we utilize a gated fusion techniques where

pose feature map is used to gate the appearance feature map.

Gated fusion. Gated fusion is seen as an important com-

ponent to regulate the flow of information through deep net-

works [20, 48]. In [20], the authors proposed the gating

mechanisms on the input and output gates for information

regulation. Similarly, highway networks idea [48] is pro-

posed to overcome the difficulties associated with the in-

creased depth in the networks. Other information regular-

ization gating mechanisms are proposed to handle noise and

occlusion [35, 43, 63]. More recently, gated fusion is used

for dynamic selection of the feature by re-scaling or cali-

brating the different components in a model [22, 49]. In re-

identification, gating mechanism is first introduced in [56],

where a gating function is proposed as a similarity measure

between the Siamese inputs. This method depends on the

reliability of the appearance features from the lower layers

for gating into upper layers. In contrast, our proposed net-

work is comprised of a lightweight gating fusion module

that enhances the representational power of the backbone

feature embedding network. It learns to propagate pose

and appearance information through the higher CNN lay-

ers with a minimal computational cost.
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3. Proposed Approach

This DL model proposed in this paper contains three

convolutional neural sub-networks, the backbone, the

pose and the gated fusion networks. Ideally, all three

networks would be trained in one step, however there is no

re-identification dataset available with annotated pose data

to be used in a joint training process. Therefore, the train-

ing process is performed in two steps. At first the pose

network is pre-trained independently on a pose estima-

tion dataset to estimate the pose related feature maps, and

then the backbone and gated fusion networks are

trained jointly for the re-identification task while freezing

the weights of the trained pose network. Given an input,

the gated fusion network relies on pose features as an at-

tention mechanism to dynamically select the most discrim-

inant convolutional filters from the backbone network for

pairwise matching.

3.1. Backbone Network:

The backbone network is trained with a labelled dataset

to extract appearance features for the given input image.

Any CNN feature extractor networks such as ResNet [18],

Inception [54] and DenseNet [23] can be used as the back-

bone network.

Considering the backbone network by itself, A, it com-

putes the appearance feature map, Al, which is the output

of the l-th layer of the backbone network for input image, I:

Al = Al(I) (1)

where, Al is the appearance feature extractor until l-th layer

defined as Al : I → f, I ∈ R
h×w×3, f ∈ R

h′
×w′

×cl , with

h, and w are the height and width of an input image and

h′, w′, cl being the height, width and channel number of

feature map size of the l-th layer.

3.2. Pose Network:

The pose network’s role is to provide information about

the human body parts and the overall pose to the gating

network for regulating the learnt appearance feature in the

backbone network. There are several networks that esti-

mates the human joints effectively [5, 59]. However, it is

difficult to precisely represent the individual portions by

their joint coordinates. Here, we select the networks with

the human pose confidence maps S and part affinity fields

L outputs as pose network in our architecture. The con-

fidence maps are the confidence distribution of the body

joints, while the part affinity fields learn the vectorize asso-

ciation between the body part. Therefore, the pose network

P generates the pose maps PS,L to represents the informa-

tive portion of the individual body parts based on the given

input images, which could be formulated as:

PS,L = P(I) (2)

squeezing non-linear 
excitation

Gated Fusion Network

appearance 
feature maps 

pose feature maps 
P

S,L

A

l

c

l

c

p

c

l

c

l

c

s

Figure 3. Schematic illustration of the function of Gated Fusion

Network (Best viewed in colors).

where P is the pose map extractor defined as P : I → f, I ∈
R

h×w×3, f ∈ R
h′

×w′
×cp , with h, w, being the height and

width of an input image and h′, w′ being the height and

width of pose map. We use OpenPose [5] as the pose net-

work and initialize the weight provided by [5]. Here, cp
represents the total number of confidence maps S of body

part locations and vector fields L of part affinities, which

encode the degree of affinities among the parts.

3.3. Gated Fusion Network:

The objective of the gated fusion network is to

enable the backbone network to learn informative fea-

ture by fusing appearance and pose features within local re-

ceptive fields at fused layer. In this regards, we use a variant

of the squeeze and excitation [22] as gated fusion which en-

ables us to adaptively re-calibrate the channel-wise feature

response to come up with informative feature. Note that,

gated fusion network allows the backbone network

to leverage pose information. It regulates the backbone net-

work features to pay more attention to the pose-based infor-

mative portion. More specifically, the gating network learns

a coefficient matrix:

G = D(E(I)) (3)

where, E ∈
{

Al,PS,L

}

is the concatenated feature map

of size h′ × w′, and each location is described by cg =
(cl + cp). D is mapping function defined as D : f → g, f ∈

R
h′

×w′
×cg , gl ∈ R

h′
×w′

×cl . This mapping function D is

learned by proposed gate module, inspired by layer fusion

methods [22] and multi-modal fusion techniques [43, 63].

The gate module in Figure 3 is designed to learn the

spatial-wise and channel-wise attention guided by pose-

based informative portion. It is composed by 2 operations:

squeeze and non-linear excitation. The squeeze operation

utilizes a 3 × 3 convolutional layer to aggregate the ap-

pearance features and pose features across their spatial do-

main, while non-linear excitation operation further captures

the channel-wise dependencies between the appearance and

pose feature internally and externally with a leaky rectified
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linear unit (LeakyReLU) and a 1 × 1 convolutional layer.

All the feature maps in the gate module have the same h′

and w′. The channel number of output attention keeps the

same as the appearance features, which allows the output

attention to scale and emphasis the appearance feature in

pixel-wise level among all channels.

Once we have gated output from the gate module then

we propose a simple and effective scheme to align the ap-

pearance feature. The resultant aligned appearance is prop-

agating to the rest of the network. Specifically, we ex-

tract aligned feature map by applying Hadamard Product

between the appearance feature, Al and gated output, gl,

and the resulting features are then normalized to attain an

aligned feature map for the rest of the layers on the back-

bone network. A schematic functionality of the gated fu-

sion network is illustrated in Figure. 3. The gated aligned

feature,f l
g scheme is formulated as:

flg = Al
⊗

gl, f̃
l

g =
flg

‖flg‖2
(4)

f̃ l
g is the normalized aligned feature representation and

⊗

denote element-wise product (Hadamard product).

4. Experimental Results

This section presents the datasets, implementation de-

tails, and performance metrics used for validation. Then,

qualitative and quantitative results with our method are

shown, and compared to the state-of-the-art. Then experi-

mental insights are also provided on the impact of applying

gated fusion at different layers of the backbone network.

4.1. Datasets:

Our experiments are performed with 3 challenging video

datasets for person re-identification – CUHK03-NP [26],

Market-1501 [68] and DukeMTMC-reID [70].

Market-1501 [68] is one of the largest public bench-

mark datasets for person re-identification. It contains 1501

identities which are captured by six different cameras, and

32,668 pedestrian image bounding-boxes obtained using the

Deformable Part Models (DPM) pedestrian detector. Each

person has 3.6 images on average at each viewpoint. The

dataset is split into two parts: 750 identities are utilized

for training and the remaining 751 identities are used for

testing. We follow the official testing protocol where 3,368

query images are selected as probe set to find the correct

match across 19,732 reference gallery images.

CUHK03-NP [26] consists of 14,096 images of 1,467

identities. Each person is captured using two cameras on the

CUHK campus, and has an average of 4.8 images in each

camera. The dataset provides both manually labeled bound-

ing boxes and DPM-detected bounding boxes. In this paper,

both experimental results on labeled and detected data are

presented. We follow the new training protocol proposed

in [72], similar to partitions of Market1501 dataset. The

new protocol splits the dataset into training and testing sets,

which consist of 767 and 700 identities, respectively. In

testing mode, one image is randomly selected from each

camera as the query for each individual, and the remaining

images are used to construct the gallery set.

DukeMTMC-reID [70] is constructed from the multi-

camera tracking dataset DukeMTMC. It contains 1,812

identities. We follow the standard splitting protocol pro-

posed in [70] where 702 identities are used as the train-

ing set and the remaining 1,110 identities as the testing set.

During testing, one query image for each identity in each

camera is used for query and the remaining as the reference

gallery set.

4.2. Implementation details:

The proposed Gated-fusion is applied on Trinet [19] as a

weak-baseline, PCB [53] and BOT [37] as strong baselines.

Network architecture. For Trinet [19] and BOT [37]

architectures, images for all the baseline are resized to

256 × 128. For PCB [53] architectures, images are re-

sized to 384 × 128, depending on the baseline. Although

the proposed method can integrate a wide range of fea-

ture extractors, we chose all these state-of-the-art that uses

ResNet50 [18] architecture as the backbone network due

to its popularity in re-identification. Given an input image,

the OpenPose network [5] is used to extract 50 pose-based

feature maps, which are then used to gate the mid-layer fea-

tures of the backbone architecture.

Training mode. The backbone and pose networks are

initially pre-trained on ImageNet [45] and COCO [30]

datasets. We adopt the OpenPose [5] network for low reso-

lution image by augmenting the datasets with varying reso-

lutions. The visualization of how good the pose estimation

works for low resolution images are shown on Figure 4. The

gated fusion network is initialized from a Gaussian distribu-

tion. During the fine-tuning with a re-identification dataset,

the pose network is frozen since the task is completely dif-

ferent. For Trinet [19], the backbone and gating networks

are trained using triplet loss, where the margin is empiri-

cally set to m = 0.3. The batch size is set to 128, with 4

randomly selected samples for each 32 identities. We train

the network for 300 epochs using the Adam Optimizer. The

initial learning rate is set to 2 × 10−4 and starts to decay

from 151 epochs by a factor of 0.005. For PCB [53] and

BOT [37] architectures, we follow the same training proce-

dures as in [53] and [37] which include Cross-Entropy loss

or ID-loss [53] and combination of ID-loss, triplet loss and

center loss [37]. We use two NVIDIA GTX-1080Ti GPUs

for all our experiments, and implement all code in PyTorch

framework.

Testing mode. The proposed model is evaluated for its
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Figure 4. Pairs of samples from (a,b) Market-1501; (c,d) DukeMTMC-reID and (e,f) CUHK03-NP datasets, respectively. The first row

shows the images of five persons (the input image, its pose map, and the corresponding schematic gated fusion output) captured in one

view. The second row shows the images from the same five individuals, captured in another view.

ability to provide discriminant feature embeddings. Open-

Pose network extracts pose-based feature maps for each

image to gate features of the backbone network. Fea-

ture extracted from query and gallery images are compared

through pair-wise matching. Similarity between each pair

of feature embeddings is measured using Euclidean dis-

tance. For each query image, all gallery images are thereby

ranked according to the similarity between their embed-

dings in Euclidean space, and the label of the most similar

gallery image is returned. We did not use any re-ranking

tricks to our experimental evaluation.

4.3. Performance measures:

Following the common trend of evaluation [56, 68, 70],

we measure the rank-1 accuracy of cumulative match-

ing characteristics (CMC), and the mean average precision

(mAP) to evaluate our proposed and baseline methods. The

CMC represents the expectation of finding a correct match

in the top n ranks. When multiple ground truth matches are

available, then CMC cannot measure how well the gallery

images are ranked. Thus, we also report the mAP scores.

Higher values represent better performance.

4.4. Gated Fusion using Weak Re­identification
Baselines:

Goal. The objective of this experiment is to analyze and

compare our proposed approach with weak baseline such

as Trinet [19]. In order to show the significance of our

gated fusion, we compare it with some recent state-of-the-

art methods those which considered some degree of contex-

tual or spatial information on their architectures.

Results. Tables 1 to 3 report the comparative per-

formances of methods on Market-1501, DukeMTMC-

reID, CUHK03-NP (detected) and CUHK03-NP (labeled)

datasets, respectively. Integrating pose-guided gated fu-

sion on weak baseline (Trinet [19]) shows a considerable

improvements over it baseline performance on Market-

1501 and DukeMTMC-reID dataset in both measures.

The rank-01 and mAP performance improvements over

baseline Trinet [19] are 3.59% and 5.5% on Market-

Table 1. Comparison of rank-1 accuracy and mAP of the pro-

posed approach with weak baseline and state-of-the-art methods

on Market-1501 dataset [68]. The best and second best results are

shown in red and blue, respectively.

Method Reference rank-1 (%) mAP (%)

Gated Siamese [56] ECCV, 2016 65.88 39.55

Spindle [64] CVPR, 2017 76.90 -

PIE [67] CVPR, 2017 78.65 53.87

MSCAN [25] CVPR, 2017 80.31 57.53

HydraPlus [36] ICCV, 2017 76.90 -

PAR [65] ICCV, 2017 81.00 63.40

JLML [27] IJCAI, 2017 85.10 65.50

PDC [50] ICCV, 2017 84.14 63.41

SVDNet [52] ICCV,2017 82.30 62.10

PAN [71] TCSVT,2018 82.81 63.35

PSE [46] CVPR, 2018 87.70 69.00

AACN [61] CVPR, 2018 85.69 66.87

MGCAM [47] CVPR, 2018 83.79 74.33

Pose Transfer [34] CVPR, 2018 87.65 68.92

Pose Norm. [41] ECCV, 2018 87.26 69.32

Part Aligned. [51] ECCV, 2018 87.60 72.20

DaRe [58] CVPR, 2018 86.40 69.30

AWTL [44] CVPR, 2018 86.11 71.76

Trinet [19] arxiv17 84.92 68.91

Gated Fusion (Trinet) Proposed 88.51 74.55

Table 2. Comparison of the proposed method with weak baseline

and state-of-the-art methods on DukeMTMC-reID [70] dataset.

The best (second best) results are shown in red (blue).

Methods Reference rank-1 (%) mAP (%)

PAN [71] TCSVT, 2017 71.59 51.51

SVDNet [52] ICCV, 2017 76.70 56.80

Pose Norm [41] ECCV, 2018 72.80 52.48

AACN [61] CVPR, 2018 76.84 59.25

Pose Transfer [34] CVPR, 2018 78.52 56.91

DaRe [58] CVPR, 2018 75.20 57.40

AWTL [44] CVPR, 2018 75.31 57.28

Trinet [19] arxiv,2017 74.91 56.65

Gated Fusion ((Trinet) Proposed 78.82 62.49

1501 dataset, while 3.9% and 5.84% on DukeMTMC-

reID datasets, respectively. Among the alternatives, Gated

Siamese [56] performs worse while using their own net-

work architecture. The performance of the state-of-the-
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Figure 5. Visual comparison of probe-set images to top 5 matching

images from the gallery-set for six random person in the Market-

1501 dataset. For each probe, the first and second rows correspond

to the ranking results produced by Baseline (Trinet) and

Gated Fusion (Trinet) approaches, respectively. Images

surrounded by a green box denotes a match between probe and

gallery.

art methods varies significantly depending on their back-

bone networks and to make the results consistent and

comparable, we demonstrate the state-of-the-art results in

which the ResNet50 as well as some degrees of contex-

tual information (i.e. pose, parts, attribute, segmenta-

tion mask) are uses as the backbone network. Never-

theless, our proposed approach consistently outperforms

the considered state-of-the-art methods irrespective to their

backbone architectures. We also present some qualita-

tive examples from Market-1501 dataset which indicates

that our proposed Gated Fusion on Trinet [19]

approach effectively finds the true match in rank-01

when there are cases of misalignment, occlusions

and body part missing, while the Baseline ap-

proach finds it in later ranks. We also present some cases

where our proposed Gated Fusion approach is not able

to find the true match in rank-01when most of the images

are well aligned, although they are eventually recognized

within first few ranks (most cases in rank-02).

On the CUHK03-NP dataset, the margin of improve-

ment of our approach is higher than the other datasets.

The performance gap between baseline Trinet [19] and our

gated fusion on baseline Trinet [19] are 7.42%/4.6% and

4.07%/3.35% of rank-01/mAP on CUHK03-NP(detected)

and CUHK03-NP(labeled) dataset, respectively. We spec-

ulate that CUHK03-NP contains intensive alignment vari-

ations than other two datasets and thus, the effect of our

proposed approach is more visible. In addition, the per-

formance improvement of manually labeled data is com-

paratively higher than the detected ones which suggest that

the manual annotations are good enough for the network to

learn the feature embedding.

Table 3. Rank-1 accuracy and mAP of proposed approach com-

pared to weak baseline and state-of-art methods on the CUHK03-

NP (detected) and CUHK03-NP (labeled) datasets. The best and

second best results are shown in red and blue, respectively.

detected labeled

Methods rank-1 (%) mAP (%) rank-1 (%) mAP (%)

PAN [71] 36.30 34.00 36.90 35.00

DPFL [9] 40.70 37.00 43.00 40.50

SVDNet [52] 41.50 37.26 40.93 37.83

HA-CNN [28] 41.70 38.60 44.40 41.00

MGCAM [47] 46.71 46.87 50.14 50.12

MLFN [6] 52.80 47.80 54.70 49.20

Pose Transfer [34] 41.60 38.70 45.10 42.00

DaRe [58] 55.10 51.30 58.10 53.70

Trinet [19] 50.43 50.20 56.93 55.64

Gated Fusion (Trinet) 57.85 54.80 61.00 58.99

4.5. Gated Fusion using Strong Re­identification
Baselines:

Goal. The aim of this experiment is to analyze the effec-

tiveness of our proposed Gated-Fusion on strong baseline

like PCB [53] and BOT [37]. We compared it with some re-

cent remarkable works, including some alignment methods

[46, 51, 69, 53], architecture [53], attention methods [61,

69, 7] and others on Market-1501 and DukeMTMC-reID

datasets.

Table 4. Rank-1 accuracy and mAP of the proposed compared

to strong baseline and state-of-the-art methods on Market-1501

dataset [68]. The best/second results are shown in red/blue, resp.

Method Reference rank-1 (%) mAP (%)

PSE [46] CVPR, 2018 87.70 69.00

AACN [61] CVPR, 2018 85.69 66.87

MGCAM [47] CVPR, 2018 83.79 74.33

Pose Transfer [34] CVPR, 2018 87.65 68.92

Pose Norm. [41] ECCV, 2018 87.26 69.32

Part Aligned. [51] ECCV, 2018 87.60 72.20

DaRe [58] CVPR, 2018 86.40 69.30

AWTL [44] CVPR, 2018 86.11 71.76

CASN+PCB [69] CVPR, 2019 94.40 82.80

MHN-6 (PCB) [7] ICCV. 2019 95.10 85.00

PCB [53] ECCV, 2018 92.30 77.40

Gated Fusion (PCB) Proposed 92.90 78.50

BOT [37] CVPRWK, 2019 94.50 85.90

Gated Fusion (BOT) Proposed 94.60 87.10

Results. Tables 4 and 5 report the comparative per-

formances of methods on Market-1501 and DukeMTMC-

reID datasets, respectively. The reported results on these

tables suggest that margin of improvements over the strong

baseline are relatively low compared to the improvement

over the weak baseline as reported in the previous section

(section 4.4). One noticeable thing is that gated fusion on

BOT [37] outperforms all the state-of-the-art on mAP mea-

surements which also suggests that where there is room for

2681



NF C2 C3 C4 C5 LF

Layers

m
A

P
 (

%
)

CUHK03-NP (detected)
55

53

51

49

NF C2 C3 C4 C5 LF

Layers

R
a
n

k
-0

1
a
c
c
u

ra
c
y
 (

%
)

CUHK03-NP (detected)

NF C2 C3 C4 C5 LF

Layers

m
A

P
 (

%
)

CUHK03-NP (labeled)

NF C2 C3 C4 C5 LF

Layers

R
a
n

k
-0

1
a
c
c
u

ra
c
y
 (

%
)

CUHK03-NP (labeled)

(a) (b) (c) (d)

58

54

52

50

48

60

54

42

48

61

58

55

52

49

46

Figure 6. Impact on mAP accuracy of applying the proposed gated fusion at different layers of the backbone architectures: (a,b) evaluations

for CUHK03-NP (detected) datasets, (c,d) evaluations for CUHK03-NP (labeled) datasets. NF: No Fusion and LF: Late Fusion.

improvements (as in mAP measurements), integrating gated

fusion performs well over the considered baselines. Al-

though our propose gated fusion does not outperform the

state-of-the-art on rank-01, it serves our purpose to show

how to improve the re-identification accuracy with contex-

tual information (i.e pose) without considering complex ar-

chitecture as in CASN+PCB [69] and MHN-6(PCB) [7].

Improvement over all the above frameworks suggest that

proposed gated fusion is general and can be applied to mul-

titude of different feature extractor and different loss func-

tions.

Table 5. Performance of the proposed method using strong base-

line and the state-of-the-art on DukeMTMC-reID [70] dataset.

The best/second results are shown in red/blue, respectably.

Methods Reference rank-1 (%) mAP (%)

PAN [71] TCSVT, 2017 71.59 51.51

SVDNet [52] ICCV, 2017 76.70 56.80

Pose Norm [41] ECCV, 2018 72.80 52.48

AACN [61] CVPR, 2018 76.84 59.25

Pose Transfer [34] CVPR, 2018 78.52 56.91

DaRe [58] CVPR, 2018 75.20 57.40

AWTL [44] CVPR, 2018 75.31 57.28

CASN+PCB [69] CVPR, 2019 87.70 73.70

MHN-6 (PCB) [7] ICCV, 2019 89.10 77.20

PCB [53] ECCV,2018 83.30 69.30

Gated Fusion (PCB) Proposed 84.50 71.10

BOT [37] CVPRWK,2019 86.40 76.40

Gated Fusion (BOT) Proposed 88.30 78.10

4.6. Gated fusion at Different Backbone Layers:

Goal. The objective of this experiment is to verify the

effectiveness of Gated Fusion approach by changing the lo-

cation of the fusion in different layers. We conduct this

experiment on CUHK03-NP (detected) and CUHK03-NP

(labeled) datasets and apply the gated fusion on different

layers of the backbone networks. To match the feature map

dimensions a bi-linear interpolation is applied.

Results. Figure. 6 shows the results of our method

by applying gated fusion on different layers of the back-

bone architecture (ResNet50) on CUHK03-NP (detected)

and CUHK03-NP (labeled) datasets. Similar to the results

in Section 4.5, the gated fusion method consistently works

well when it fusion is done on the mid-level layers. This

rank-01 performance improvements between when there is

no fusion (NF) and the fusion at layer C4 are 7.42% and

4.07% on CUHK03-NP (detected) and CUHK03-NP (la-

beled) datasets, respectively.

Fusing the pose feature maps at the upper layers of the

network, referred to as late fusion (LF), degrades the per-

formance and makes the results even worse than without

using any fusion. We did not report the results for gated fu-

sion on layer C1, as the performance is considerably worse

compared to other fusion scenarios.

We also observed that there is a gap in performance for

fusion at C3 and C4. For some datasets, fusion at C3 out-

performs fusion at C4, however both C3 and C4 are con-

sidered as mid level CNN layers. Results support our claim

that mid-level features (i.e. pose) can effectively be fused on

mid-level layers on backbone architectures. Applying gated

fusion simultaneously on multiple layers made the network

unstable, possibly because the accumulation of the pose net-

work output over multiple layers.

5. Conclusions

In this paper, a new framework is proposed for pose-

aligned person re-identification, the aim of which is not to

outperform the state-of-the-art but to assist the state-of-the-

art CNN architectures. The key component of this frame-

work is the gated fusion network that dynamically selects

the more relevant convolutional filters of a state-of-the-art

CNN architecture based on pose information, for enhanced

feature representation and inference. This framework ex-

ploits the advantages of pose features to gate appearance

information at mid-level CNN layers. Experimental re-

sults with three state-of-the-art methods on three bench-

mark datasets indicate that the proposed framework can out-

perform considered state-of-the-art methods. Moreover, our

proposed architecture is general and can be applied with a

multitude of different feature extractors and loss functions.
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