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Abstract

A common approach to censoring digital image content

is masking the region(s) of interest with a solid color or

pattern. In the case where the masked image will be used as

input for classification or matching, the mask itself may im-

pact the results. Recent work in image inpainting provides

an alternative to masking by replacing the foreground with

predicted background. In this paper, we perform an exten-

sive evaluation of inpainting approaches to understand how

well inpainted images can serve as proxies for the original

in classification and retrieval. Results indicate that the met-

rics typically used to evaluate inpainting performance (e.g.,

reconstruction accuracy) do not necessarily correspond to

improved classification or retrieval, especially in the case

of person-shaped masked regions.

1. Introduction

Censoring content is a common pre-processing step with

images containing sensitive information. For a variety

of reasons, users may wish to hide portions of an image

prior to uploading to a cloud-based service. For example,

a special-purpose image search engine was developed to

identify hotel rooms from images to aid in the fight against

human trafficking [28]. In this scenario, users (i.e., law en-

forcement) obscure the victims in the images, particularly

in the case of minors, often using off-the-shelf photo edit-

ing software. There are a variety of readily-available image

processing tools that include “painting” over regions using

a solid color or pattern, blurring or pixelating these areas,

and, more recently, employing deep learning to predict the

value of “missing” pixels (Figure 1).

Image inpainting is the process of recovering missing in-

formation from an image. In many cases, inpainting is used

to restore images corrupted in some way. The focus of this

paper is the case where inpainting is used extend the back-

ground of an image into a region where a foreground ob-

ject may have been explicitly removed to conceal the pres-

ence of an object or person, usually for privacy preservation.

We conduct an evaluation of image inpainting methods for

In
p
a
in
te
d
	

Q
u
e
ry
	

Masked	

Query	

Figure 1. Image content can be censored by masking (top right) or

inpainting (bottom left). In this paper, we evaluate how masking

or inpainting images affects image classification and retrieval

image classification and retrieval. While previous surveys

have evaluated the reconstruction performance of inpainting

methods qualitatively [7, 11, 33], the goal of this work is to

evaluate how well inpainted images can be used as proxies

for the original in modern image classification and retrieval

scenarios.

In this paper, we (1) present a comprehensive evaluation

of both recent and classic methods for image inpainting,

(2) compare the accuracy of downstream tasks with inpaint-

ing reconstruction accuracy, and (3) investigate whether in-

painting and/or retrieval performance are impacted by the

shape of the masked region. Rather than applying in-

painting for aesthetic purposes, we seek to to understand

how these tools can be applied to privacy-preserving image

search. To the best of our knowledge, this work represents

the first quantitative evaluation of inpainting approaches for

image classification and search.
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2. Related Work

Inpainting methods can be broadly categorized as tradi-

tional or learning-based. In this section, we review methods

from both classes, providing additional details for the meth-

ods used in the comparative evaluation.

2.1. Traditional Methods

The tools typically found in commercial photo-editing

software are mainly based on traditional inpainting meth-

ods. These traditional methods compute the value of miss-

ing pixels using the values from neighboring (spatially

and/or visually) image regions. This category of inpainting

methods can be further subdivided into two subcategories:

(1) diffusion and (2) patch-based methods that differ mainly

in definition of “neighboring” image patches.

Diffusion Methods Diffusion methods extrapolate the

values of adjacent image regions to the missing portion;

approaches differ mainly in the extrapolation technique.

In [4], the image isophotes are calculated by computing the

direction of least change at each pixel in the known region.

The values of the pixels in the missing region are computed

such that the image Laplacian is constant in the isophote di-

rection, which ensures a smooth transition from the known

region to the inpainted area. A successor method analo-

gizes the task with fluid dynamics and applies the Navier-

Stokes equations to solve for the missing pixel values [3].

To improve isophote estimation, other methods minimize

the total variation in the infilled region [5, 6]. Telea [29]

introduced an approach based on the fast marching algo-

rithm [24] where the pixels along the border of the miss-

ing regions are inpainted using weighted averages of the

neighborhood pixel values such that both low and high fre-

quency information is maintained; the image is infilled in

one pass. Overall, diffusion approaches work reasonably

well for small regions, but typically fail to reproduce tex-

tured regions, especially for large infills.

Patch-Based Methods Patch-based methods rely on

other visually-similar, rather than spatially adjacent, known

image regions as support for the infilling process. Patch-

based methods take inspiration from an algorithm initially

designed for texture synthesis [9]. At a high level, the pro-

cess involves searching for (and replicating) the most simi-

lar image patch in the known region to an image patch at the

border of the unknown region. Methods in this class vary

in the size and shape of the patches, similarity measures,

and search process. One method optimized the sampling

strategy for finding similar patches [19]. PatchMatch [2]

uses randomized search and, for efficiency, exploits the as-

sumption that the best matches for neighboring unknown

patches are likely nearby. Enhancements include improv-

Figure 2. The outlined regions were infilled using learning-based

approaches (left) and traditional methods (right).

ing how patches are blended together [8] and using struc-

tural sparsity to improve match quality [35]. While patch-

based methods outperform diffusion methods for inpainting

highly textured regions, they are limited to only replicating

visual content from known regions of the given image.

2.2. Learning­Based Methods

Recently, learning-based methods have been developed

to overcome the limitations of traditional methods, as

shown in Figure 2. These approaches learn from large im-

age collections to predict the values of missing pixels. The

early learning-based methods relied on relatively simple

multilayer perceptrons to inpaint images in regions with su-

perimposed text by minimizing reconstruction loss [18, 34].

Modern approaches have involved using convolutional net-

works in conjunction with adversarial training to improve

results with larger masked regions.

Context Encoder Pathak et al. [22] trained a convolu-

tional model using an objective function that combines l2
reconstruction and adversarial loss. This infilling network,

called the Context Encoder, follows the typical encoder-

decoder paradigm. The encoder module, based on the ar-

chitecture of AlexNet, takes as input a masked image and

outputs a feature vector to the decoder through a channel-

wise fully connected layer. The decoder, through a series

of deconvolutional layers, then outputs the infilled image.

During training, a separate discriminator network is used to

produce more realistic looking images. Many modern infill-

ing methods incorporate this adversarial training strategy.

1061



GAN-based Methods A number of methods derive from

the architecture of the Context Encoder [22], with varia-

tions in loss functions, regularization, backbone architec-

tures, and connectivity.

Globally and Locally Consistent Image Completion

(GLCIC) [16] uses two discriminator networks, one for the

entire image and another for image patches. Rather than

outputting a flattened feature vector, the encoder reduces the

input to quarter-sized feature maps. Dilated convolutional

layers [37], where the kernels cover a larger image region

without adding additional parameters, are also used within

the network. This allows for the decoder to cover a larger

region around each pixel without increasing the number of

weights, which is beneficial when the size of the mask is

large in proportion to the rest of the image.

The generator in Contextual Attention (CtxAttn) [38], is

comprised of two subnetworks. The first is the coarse net-

work, which is trained with l1 reconstruction loss and out-

puts a rough prediction of the masked region. This output

is then passed to a refinement network that produces the

infilled image using two parallel encoder modules, one of

which includes a contextual attention layer, which generates

an attention score for each non-masked pixel that is based

on the similarity to the unknown patches. These attention

scores are incorporated during deconvolution. The refine-

ment network is trained using reconstruction and adversar-

ial loss with separate local and global discriminators. The

adversarial objective combines Wasserstein loss [1] and a

gradient penalty term [12] applied to missing pixels. Other

inpainting methods follow a similar structure [27].

Generative Multi-column Convolutional Neural Net-

works (GMCNN) [31] uses a generator constructed of three

parallel encoder-decoder modules, each with a different fil-

ter size. The output feature maps of each module are con-

catenated and passed to a shared two-layer convolution net-

work, which produces the infilled image. In addition to re-

construction and adversarial losses, GMCNN also uses an

implicit diversified Markov random fields (ID-MRF) loss,

which uses patches extracted randomly from both the in-

filled and known regions. For each possible pair of gener-

ated and ground truth patches, a relative similarity metric is

computed between the feature maps produced from speci-

fied layers of a pretrained VGG network [25].

EdgeConnect [21] is comprised of two networks. The

edge generator takes as input the grey-scaled version of a

masked image and an edge map to produce a prediction of

the edges for the masked region of the image. The masked

image and generated edge map are passed to the infilling

network to produce the completed image. The generators

are trained with separate discriminators. The loss func-

tion for the edge generator combines adversarial loss with

feature-matching loss [30], which is computed using the

difference between the feature maps of the predicted and

ground truth edges generated by its discriminator. For the

infilling network, its objective function includes l1, adver-

sarial, perceptual [10], and style loss [17]. Perceptual and

style loss are similar to ID-MRF loss in that they are derived

by comparing the feature maps of the infilled and ground

truth images that are generated from a separate, pretrained

network.

PIC-Net [39] differs from the other GAN-based methods

by sampling an encoding vector from a learned probability

distribution of the latent space in a manner similar to Condi-

tional Variational Autoencoders [26]. This model generates

multiple inpaintings for the same input. Additionally, PIC-

Net uses two generators with shared weights during train-

ing. One takes as input a masked image and samples the

encoding vector, which is then decoded to produce the out-

put image. The other uses the masked portions of the image

in conjunction with feature vectors from the first generator

to reconstruct the groundtruth image. This second genera-

tor helps facilitate training and only the first is used during

inference.

U-Net-based Methods Recent inpainting approaches are

based on a U-Net [23]-like architecture, such as PConv [20]

and DF-Net [14]. DF-Net uses fusion blocks in the de-

coding layers. Each fusion block is essentially a shallow

convolutional network that produces an inpainted image by

generating a “raw completion” and alpha composition map,

using the decoder’s feature maps and the scaled masked im-

age as input. These are then blended together to produce

the inpainted output. The network generates multiple im-

ages of varying resolutions by placing fusion blocks at dif-

ferent levels within the decoder (only the output of the top

block is used at test time). Each output layer of the network

is trained to minimize an objective function suited to the

output resolution. l1 loss is used to reconstruct large-scale

features at all levels, while the higher levels incorporate a

combination of perceptual [10] and style [17] losses to bet-

ter achieve finer textures.

2.3. Summary

Previous surveys on image inpainting and completion

describe and taxonomize the many different algorithms that

have been developed for this task [11, 7, 33]. While these

surveys often include qualitative evaluations, they seldom

include a direct comparison between methods. Part of the

challenge is that quantitatively evaluating infilled images is

difficult due to the ill-posed nature of the task; there are

multiple plausible outputs for a given masked image. Met-

rics that estimate reconstruction accuracy do not fully ac-

count for the visual aesthetics of the reconstruction. This

work presents a quantitative evaluation of inpainting meth-

ods using the proxy measures of classification and retrieval

performance on the generated images.
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Figure 3. Sample images used in the experiments.

3. Evaluation

The experiments are meant to evaluate the efficacy of in-

painted images for image classification and retrieval in or-

der to understand how censoring images using methods de-

signed for inpainting impacts the results of an image search.

We evaluated each method on datasets commonly used for

evaluating inpainting, scene classification, and image re-

trieval. Figure 3 shows example images from these datasets.

Evaluated Methods We selected a representative sam-

ple of inpainting methods. Serving as exemplars for tra-

ditional methods, we evaluated Navier-Stokes (NS) [3] and

Fast Marching (FM) [29]. For learning-based methods, we

considered Globally and Locally Consistent Image Com-

pletion (GLCIC) [16], Generative Image Inpainting with

Contextual Attention (CtxAttn) [38], EdgeConnect (Edge-

Con) [21], Generative Multi-column CNN (GMCNN) [31],

Pluralistic Image Completion (PIC-Net) [39], and Deep Fu-

sion Network for Image Completion (DF-Net) [14].

Implementation Our experiments were carried out on

high-performance compute nodes with Intel Xeon CPUs,

96GB+ RAM, and Nvidia Tesla P100 GPUs. Where avail-

able, we use the implementation provided by the original

authors. The learning-based approaches were pre-trained

on the Places2 dataset [40], a large-scale collection of in-

door and outdoor scenes. Two of the methods require square

images as input, so the images were scaled such that the

smaller dimension was 512 pixels and then center-cropped.

PIC-Net worked best with smaller input, so the images were

reduced to 256x256.

3.1. Performance

Table 1 presents the platform, framework, and computa-

tional costs (e.g., compute time, memory) for the methods

used in the evaluation. Each of the methods is built on com-

monly used platforms for computer vision (e.g., OpenCV,

Tensorflow). In general, the traditional methods are CPU-

based, while the deep learning methods offer implementa-

Model Platform Framework Infill (s) RAM (GB)

NS CPU OpenCV .154 .065

FM CPU OpenCV .138 .065

PIC-Net GPU PyTorch .544 2.59

GMCNN GPU Tensorflow .262 3.28

GLCIC CPU Torch 5.97 4.00

CtxAttn GPU Tensorflow .610 2.62

EdgeCon GPU PyTorch .207 3.64

DF-Net GPU PyTorch .044 2.75

Table 1. Properties of the evaluated inpainting algorithms. Infill

time (s) is the average per 512x512 image resolution with 40%

pixels masked.

tions that take advantage of the GPU.1 On average, the deep

learning methods take 2-5x time to infill, even with GPU

acceleration. Without GPU acceleration, these methods can

be an order of magnitude slower. The memory usage is

negligible for the traditional approaches and dominated by

the CNN weights for the learning based versions. For the

learning-based versions, the timing does not include load-

ing the pre-trained weights into memory.

3.2. Classifying Inpainted Images

The first experiment follows the most common evalua-

tion protocol for inpainting, which uses irregular holes, or

randomly positioned patches, as the missing image regions,

as depicted in Figure 2 (top). For this experiment, we use

Places2 [40], a widely-used dataset for scene recognition

with over 2 million images from 365 different classes.

The query images include 5,000 randomly-selected im-

ages from the Places2 validation set. For each image, we

generated 7 different masks occupying 10%, 20%, . . . , 70%
of the image area. Each mask is generated by randomly

placing small rectangles (∼2.5% image area) until the cov-

erage threshold is met. We provided each masked version to

the set of inpainting algorithms. To evaluate the inpainting

performance, we compared the infilled output to the original

image and computed 3 reconstruction metrics: normalized

root mean square error (NRMSE), peak signal to noise ratio

(PSNR), and structural similarity index (SSIM) [32] (com-

puted with window size = 11). For classification, we used

two models, ResNet-18 [13] and DenseNet-161 [15], pre-

trained to Places2. For the original, masked, and infilled

images, we compute the top-5 classification accuracy for

each network. For retrieval, our dataset consists of 100,000

images from the Places 2 training set. For the ResNet-18

model, we take the output after the last pooling layer nor-

malized to the unit hypersphere as our image feature repre-

sentation. We query the database using the features gener-

ated for the original, masked, and infilled images and sort

the results based on cosine similarity to the input. To assess

1Due to library conflicts with the GPU version of GLCIC, we used the

CPU version in testing.
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Figure 4. Top-5 classification accuracy vs. % masked.

retrieval performance, we consider the retrieval results on

the original image to be the ground truth and compute the

normalized cumulative gain @10 and @50 of the matches

to the altered queries. The results are presented in Table 2.

Inpainting In general, the learning-based methods out-

perform the traditional methods and performance is consis-

tent across all 3 metrics. As the masks increase in size,

reconstruction performance drops across all methods. For

example, SSIM for the NS method drops from .872 at 20%

masking to .614 at 60% and for DF-Net from .878 to .605.

In addition, the margin between the best and worst perform-

ing methods increases with the size of masked region, grow-

ing from 4.7% at 20% to 40.5% at 60%.

Classification Figure 4 shows that classification accuracy

also degrades as a function of the masked area. At 20%

masked, all of the methods achieve a top-5 classification

accuracy within 6% of that of the unaltered original image.

The differences between methods are more pronounced at

the higher masking levels. At 60% masking, the best in-

painting method, DF-Net, shows drops of 7% and 8% for

ResNet and DenseNet, respectively, while GLCIC under-

performs by 20% and 22%. By far, the worst option is sim-

ply masking; classification accuracy drops by 68% and 71%

for the two networks. Figure 5 shows example classification

results for masking, NS, PIC-Net, and DF-Net. For each

image, the top 5 predicted labels are shown in the inset with

the correct label (if present) checked.

Figure 6 shows a plot of the classification accuracy using

ResNet-18 at 40% masking versus the reconstruction per-

formance, as measured using the structural similarity index

(SSIM). For the learning-based methods, there is a strong

correlation (r2 = .737) between classification accuracy and

inpainting reconstruction. The traditional methods, NS and

FM, do not follow this trend; both methods score highly us-

ing reconstruction metrics, but the resulting infilled images

are not well classified.

Retrieval The retrieval results follow the general pattern

of classification. DF-Net generates images which result

in the highest performance for both classification and re-

trieval while the traditional methods are the worst, doing

only slightly better than masking. However, while the rel-

ative ordering is mostly similar between the performance

in the classification and retrieval tasks, the impact of mask-

ing and inpainting is much more evident in the retrieval re-

sults. Consider the traditional NS method. At the small

masking level (20%) the DenseNet classification accuracy

differs from the baseline by only 5%. However, nDCG10,

a weighted measure of the similarity between rankings, is

only .524 suggesting a very different ordering of the top 10

returned matches. The same is true for the best-performing

method at 20% masking, where the classification accu-

racy of the infilled images is the same as the original, yet

nDCG10 is .837. This issue is exacerbated at the higher

masking levels, with most of the methods exhibiting quite

low retrieval performance when compared to the unaltered

image. This suggests that the feature vectors used for image

similarity searches can be sensitive to the alterations of in-

filling methods. A complicating factor is that this “irregular

hole” pattern affects multiple regions of the image. In the

next experiment, we consider a real-world use case where

the masked regions tend to be contiguous.

3.3. Image Censoring

While the irregular hole mask pattern is commonly used

for evaluating inpainting, it is uncommon in real-world set-

tings. In this experiment, we consider the image editing

task of censoring person-shaped regions from real-world

images. This experiment is motivated by a special-purpose

image search engine developed to identify hotel rooms

from images to aid in the fight against human trafficking.

Users obscure the victims in the images, often using ba-

sic masking. Hotels50k [28] is designed to evaluate this

task. Hotels50k contains over one million images of hotel

rooms from 50,000 different hotels. The test images include

human-shaped masks designed to simulate censored image

queries. Compared to the generic classification and retrieval

tasks of the previous experiments, the goal is fine-grained

hotel room identification.

The test set consists of 17,150 images. We evaluate the

‘medium’ setting where the masked regions occupy roughly

20% of the image area. The database of training images

consists of 1,027,871 images. Our backbone model is a

ResNet-50 embedding network trained on Hotels50k [36].

Following the experimental protocol in [28], we report the

top-k accuracy for k = 1, 10, 100.

Table 3 shows the top-k classification accuracy on the

Hotels50k dataset. Stylianou et al. [28] take a different ap-

proach to dealing with censored images. They assumed

the query images will contain solid color masks and, dur-
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Inpainting Classification (top-5) Retrieval (ResNet)

NRMSE ↓ PSNR ↑ SSIM ↑ DenseNet ResNet nDCG10 nDCG50

Original (0% Masked) – – – .848 .821 – –

2
0

%
M

as
k
ed

Masked – – – .639 .523 .141 .233

NS .147 23.4 .872 .796 .759 .524 .652

FM .145 23.5 .874 .796 .759 .525 .653

PIC-Net .151 23.21 .805 .827 .792 .663 .775

GMCNN .152 23.1 .871 .834 .801 .748 .840

GLCIC .143 23.6 .852 .835 .800 .765 .854

CtxAttn .143 23.7 .874 .841 .813 .793 .874

EdgeCon .126 24.8 .868 .839 .806 .804 .882

DF-Net .125 24.9 .877 .843 .821 .837 .905

4
0

%
M

as
k
ed

Masked – – – .359 .244 .022 .050

NS .226 19.9 .747 .664 .601 .175 .286

FM .215 20.0 .750 .661 .590 .174 .284

PIC-Net .2217 19.8 .660 .754 .713 .358 .495

GMCNN .253 18.5 .724 .771 .725 .392 .527

GLCIC .215 20.0 .712 .798 .752 .482 .616

CtxAttn .215 20.1 .741 .810 .778 .555 .682

EdgeCon .187 21.3 .750 .815 .784 .601 .725

DF-Net .189 21.2 .751 .826 .795 .661 .772

6
0

%
M

as
k
ed

Masked – – – .164 .113 .005 .014

NS .284 17.5 .614 .420 .329 .034 .075

FM .284 17.5 .617 .418 .329 .034 .076

PIC-Net .308 16.9 .481 .534 .498 .096 .176

GMCNN .389 14.7 .532 .563 .489 .100 .174

GLCIC .285 17.4 .548 .644 .604 .181 .292

CtxAttn .289 17.5 .584 .689 .661 .269 .390

EdgeCon .249 18.7 .611 .732 .694 .315 .449

DF-Net .256 18.5 .609 .765 .737 .420 .556
Table 2. Reconstruction, classification, and retrieval results for the irregular holes infill experiment using the Places2 dataset. In each

grouping, the first and second best results are in bold and italics, respectively.
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Figure 5. Classification accuracy for masked images (top left) and inpainted using NS (top right), PIC-Net (bottom left), and DF-Net

(bottom right). For each image, the inset lists the top 5 predicted labels from DenseNet-161, with the correct label (if present) checked.

For each group, from L-R, the images were 20%, 40%, and 60% masked.
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k = 1 k = 10 k = 100
[28] 0.059 0.141 0.299

Original .164 .300 .495

Masked .110 .225 .407

NS .132 .255 .443

FM .131 .252 .442

PIC-Net .082 .178 .339

GMCNN .127 .246 .430

GLCIC .117 .231 .416

CtxAttn .128 .248 .440

EdgeCon .133 .250 .437

DF-Net .141 .270 .460

Table 3. Top-k retrieval results using the Hotels50k dataset. The

first and second best results are in bold and italics, respectively.

ing training, randomly apply masks to the training images

as data augmentation. The infilled results are not directly

comparable with [28] as both the backbone network and

training regime differ. In this case, we observe that the top-

performing infill approaches perform on par with the unal-

tered image and much better than the masked images. While

the overall top performing method is the same as the previ-

ous experiment (DF-Net), the next best performing meth-

ods are the traditional methods, NS and FM. Moreover, un-

like the synthetic setting of the previous experiment, we did

not observe drastic decreases in retrieval performance us-

ing inpainted images for this task. Figure 7 shows the top

5 retrieval results for 3 queries using masking, a traditional

method (NS), and learning-based method (DF-Net).

3.4. Discussion

This work provides an alternative quantitative frame-

work for evaluating inpainting methods. Of the methods

evaluated, DF-Net was consistently the best performing

method across metrics for reconstruction, classification, and

retrieval and for masked regions of various sizes. Visual in-

spection of the inpainted images aligns with the quantita-

tive results; DF-Net produced the most natural-looking in-

painted regions. The generated portions blended well with

the rest of the image. For larger masks, the learning-based

methods were prone to producing noticeable artifacts in the

inpainted area, such as faint, repeated textures. However,

DF-Net produced the least noticeable visual artifacts. It

may be noteworthy that DF-Net was the only learning-based

method evaluated that did not employ adversarial loss.

For each method, we used the settings recommended

by the original authors. Some of the methods consistently

produced visual artifacts in the output images. It was not

clear if this was by design or an unfortunate combination

of method parameters and our experimental setting. For in-

stance, for GMCNN, the inpainted areas often did not blend

well with the boundary regions and faint, vertical black lines

were noticeable when the infill was lightly colored. PIC-

Net appeared to produce repeating textural patterns across

different images, especially when the inputs had large, con-

tiguous masked regions. These noticeable artifacts help ex-

plain the performance of these two methods.

It is evident that the size, shape, and distribution of the

masked region plays a role in the performance of down-

stream algorithm. While the masking had a large impact

on retrieval performance for the synthetic experiment with

multiple irregularly-shaped masked regions per image, the

effect was not as pronounced for the real-world setting with

the localized person-shaped masks. Also, the traditional

methods, which were the worst performing for classification

task were near the top for the real-world retrieval task. The

best censoring approach for image search may not necessar-

ily correspond with the most visually-appealing inpainting

method; it may also depend on the problem domain.

4. Conclusion

This paper presented an evaluation of inpainting ap-

proaches as a pre-processing step for image classification

and search. The results show the modern-learning based

approaches outperform traditional methods even when the

difference is not reflected in reconstruction metrics. For

the types of queries where image censoring is necessary,

inpainting provides an alternative to masking for privacy-

preserving image search. In addition to the improved clas-

sification and retrieval performance, inpainting can conceal

the fact that the query image was altered.
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