
Is Pruning Compression?: Investigating Pruning Via Network Layer Similarity

Cody Blakeney Yan Yan Ziliang Zong

Texas State University

cjb92@txtstate.edu

Abstract

Unstructured neural network pruning is an effective

technique that can significantly reduce theoretical model

size, computation demand and energy consumption of large

neural networks without compromising accuracy. However,

a number of fundamental questions about pruning are not

answered yet. For example, do the pruned neural networks

contain the same representations as the original network?

Is pruning a compression or evolution process? Does prun-

ing only work on trained neural networks? What is the role

and value of the uncovered sparsity structure? In this pa-

per, we strive to answer these questions by analyzing three

unstructured pruning methods (magnitude based pruning,

post-pruning re-initialization, and random sparse initializa-

tion). We conduct extensive experiments using the Singu-

lar Vector Canonical Correlation Analysis (SVCCA) tool to

study and contrast layer representations of pruned and orig-

inal ResNet, VGG, and ConvNet models. We have several

interesting observations: 1) Pruned neural network models

evolve to substantially different representations while still

maintaining similar accuracy. 2) Initialized sparse models

can achieve reasonably good accuracy compared to well-

engineered pruning methods. 3) Sparsity structures discov-

ered by pruning models are not inherently important or use-

ful.

1. Introduction

Nowadays, deep artificial neural networks have undoubt-

edly become the most promising method in solving many

challenging computer vision problems [20, 6]. However,

the model size and parameter space of successful deep neu-

ral networks are typically massive, which prevents them

from being deployed on edge-devices (e.g., mobile phones)

with limited resources.

To address this problem, pruning has been studied exten-

sively in the literature [9, 5, 2, 23, 17, 13] as an effective

technique that can significantly reduce theoretical model

size, computation demand and energy consumption of large

neural networks without compromising accuracy. The key

idea of pruning is to eliminate or mask non-essential com-

ponents (e.g., less important neurons or negligible weight

values) of a deep neural network. Exemplary pruning meth-

ods include the early work presented by [10] and a more

recent work by Han et al. [5]. Since then, a variety of

pruning methods, such as parameter pruning and sharing

[5, 2, 9], low-rank factorization [16, 7, 21], and compact

convolutional filters [22, 18], have been published (ref. Re-

lated Work for details). Despite all this progress, our fun-

damental understanding about pruning is still in its infancy.

For example, existing pruning theories and techniques tend

to agree with the following hypotheses:

• Hypothesis 1: Pruning is an iterative compressing pro-

cess. It compresses the original model to a subnet and

the representation of the original network remains sim-

ilar, which is why a pruned network can achieve simi-

lar accuracy as the original network.

• Hypothesis 2: A complex model needs to be trained

first before it can be pruned. Models with sparsity at

initialization are unlikely to succeed.

• Hypothesis 3: Once a deep neural network is pruned

and recovered to good accuracy (after retraining), its

pruned model structure and weights carry important

information and should help improve models trained

from scratch.

As more pruning methods being developed, it is time to

rethink if these hypotheses that are derived from previous

research and practices still hold true and ask the following

fundamental questions about pruning. Do the pruned neural

networks contain the same representations as the original

network? Is pruning truly a compression process? Does

pruning only work on trained neural networks? Do we re-

ally need sophisticated pruning strategies? What happens if

sparsity is chosen randomly?

This paper strives to answer these questions. Specifi-

cally, we analyze three fine-grained pruning methods (mag-

nitude based pruning, post-pruning re-initialization, and

random sparse initialization). In our experiments, the Sin-

gular Vector Canonical Correlation Analysis (SVCCA) tool

914



Figure 1: Overview of proposed approach.

[15] is utilized to study and contrast layer representations

of pruned and original ResNet [6], VGG, and ConvNet [8]

models. We find that: 1) Pruning is not a passive compres-

sion process without learning new knowledge. Rather, the

pruned model is capable of evolving proactively to survive

in a dramatically changed environment, which is done by

learning and transforming to more effective representations

when aggressive pruning is occurring. 2) Models initial-

ized with sparsity structures can achieve reasonably good

accuracy compared to well-engineered pruning methods. 3)

Sparsity structures discovered by performing unstructured

pruning on models are not inherently important or useful.

Figure 1 illustrates the overview of our proposed ap-

proach. We first take an original network (ResNet, VGG,

or ConvNet) and prune it using magnitude based pruning,

post-pruning re-initialization, or random sparse initializa-

tion (ref. section 4 for details) at different sparsities respec-

tively. The neurons’ vectors at each layer, which are gener-

ated by Tensorflow during the training and pruning process,

are then stored and processed by the SVCCA analysis tool

created by Google [15] (ref. section 3 for details). Lastly,

the accuracy of different pruning methods and the similar-

ity of different representations are analyzed and presented

in section 5.

2. Related Work

Deep neural networks have become extremely popu-

lar and been successfully used in different applications re-

cently. However, most designed neural networks in machine

learning and computer vision field [20, 6] focused on accu-

racy rather than efficiency. There has been some work on re-

ducing the storage and computation cost by model compres-

sion. For example, Lecun Yann had done early work about

pruning network which has been investigated in the opti-

mal brain damage work [10]. The basic idea is that differ-

ent neurons contribute differently in the network. The low

ranking neurons can be removed, which results in a smaller

and faster network. Recently, Mariet et al. [12] proposed

to identify a subset of diverse neurons that do not require

retraining to reduce redundancy of the network. In this sec-

tion, we first review the model compression [3] from three

aspects, i.e., parameter pruning and sharing, low-rank fac-

torization, and compact convolutional filters. Afterwards,

we briefly discuss the Lottery Ticket Hypotheses and the

existing work to explore the nature of network pruning.

Parameter Pruning and Sharing reduces redundant pa-

rameters which are not sensitive to the performance. It can

be used in both convolutional layers and fully connected

layers. Han et al. [5] proposed to reduce the total number

of parameters and operations in the entire neural network.

Chen et al. [2] introduced a HashedNet model that used a

915



low-cost hash function to group weights into hash buckets

for parameter sharing. Lebedev et al. [9] imposed group

sparsity constraint on the convolutional filters to achieve

structured brain damage. Zhou et al. [23] proposed a group-

sparse regularizer on neurons during the training stage to

learn compact CNNs with reduced filters. Magnitude-based

weight pruning methods are computationally efficient and

scalable to large networks and datasets, which makes it

become a popular approach for network pruning. See et

al. [17] showed that weight pruning with retraining was a

highly effective method of compression and regularization

on a state-of-the-art NMT system, compressing the model

to 20% of its size with no loss of performance. Narang et

al. [13] proposed a technique to reduce the parameters of a

network by pruning weights during the initial training of the

network. At the end of training, the parameters of the net-

work were sparse while accuracy was still close to the origi-

nal dense neural network. The network size was reduced by

8x and the time required to train the model remained con-

stant. Anwar et al. [1] introduced a three-level pruning of

the weights and locate the pruning candidates using particle

filtering, which selected the best combination from a num-

ber of random generated masks. Polyak et al. [14] detected

the less frequently activated feature maps with sample input

data for face detection applications.

Low-rank Factorization uses matrix or tensor decomposi-

tion to estimate the informative parameters. It can be used in

both convolutional layers and fully connected layers. Riga-

monti et al. [16] introduced learning separable 1D filter fol-

lowing the idea of dictionary learning. Jaderberg et al. [7]

proposed using different tensor decomposition schemes to

achieve double speed for a single convolutional layer with

1% drop in classification accuracy in text recognition. Tai

et al. [21] proposed a new algorithm for computing the

low-rank tensor decomposition for training low-rank con-

strained CNNs from scratch.

Compact Convolutional Filters is to design special struc-

tural convolutional filters to save parameters. The ap-

proaches can be only used for convolutional layers. Cohen

et al. introduced Group equivariant Convolutional Neural

Networks (G-CNNs), a natural generalization of convolu-

tional neural networks that can reduce sample complexity

by exploiting symmetries. G-CNNs use G-convolutions, a

new type of layer that enjoys a substantially higher degree

of weight sharing than regular convolution layers. Zhai et

al. [22] proposed doubly convolutional neural networks

(DCNNs), which significantly improved the performance

of CNNs by further exploring this idea. Instead of allo-

cating a set of convolutional filters that were independently

learned, a DCNN maintained groups of filters where filters

within each group were translated versions of each other.

Shang et al. [18] integrated CRelu into several state-of-

the-art CNN architectures and demonstrated improvement

in their recognition performance on the CIFAR-10/100 and

ImageNet datasets with fewer trainable parameters.

Lottery Ticket Hypotheses and The Nature of Network

Pruning. After the renewed interest in pruning proposed

by [5], many researchers have begun studying what is hap-

pening during the process of pruning and how it works. A

notable recent work which focuses on unstructured iterative

pruning [4] proposes the Lottery Ticket Hypothesis which

states ”Dense, randomly-initialized, feed-forward networks

contain sub-networks (winning tickets) that - when trained

in isolation – reach test accuracy comparable to the original

network in a similar number of iterations.” These subnets

as the paper articulates have particularly lucky weights and

connections such that they are able to converge through gra-

dient descent towards accuracies as better than the model as

a whole. The paper suggests that the effectiveness of deep

learning is due in part to the high number of weights and

layers which increases the odds of initializing some sub-

nets within the model that can find some good local min-

ima. While the authors claim that it is a combination of both

weights and connections that make these ”winning tickets”,

it is unclear to what role, the weights and connections re-

spectively, play. Our work tries to address more thoroughly

on how network topology affects accuracy and learned rep-

resentations.

Another work [11] trying to explain the nature of prun-

ing focuses primarily on structured pruning. They find the

resulting model architectures from the structured pruning

process are well suited for training from scratch. That is,

the resulting architectures (not the found weights) are use-

ful. Their work suggests that structured pruning can be con-

sidered as one type of neural network architecture search.

The contradictions between their findings and that from [4]

show that there is a fundamental difference in what struc-

tured and unstructured pruning algorithms do with the orig-

inal model.

Nevertheless, none of the prior work has studied the fun-

damental questions that we asked previously. The lack of

understanding about the nature of pruning, the learned rep-

resentations during the pruning and retraining process, and

the trend of developing more sophisticated pruning algo-

rithms raises concerns to us. By exploring these questions,

this study is distinct from all previous work on neural net-

work pruning.

3. Singular Vector Canonical Correlation

Analysis (SVCCA)

Most previous work has been focused on improving dif-

ferent pruning methods without deep understanding about

how network pruning really works. In order to take a deep

dive into the learning process, it is essential to understand

what representations are learned at every stage of training

and pruning. Additionally, it is critical to have a tool that

916



can quantitatively compare two representations and eval-

uate how similar or different they are. In this study, we

leverage the Singular Vector Canonical Correlation Analy-

sis (SVCCA) tool created by [15] to compare and analyze

the learned representations of different layers. This section

summarizes the SVCCA process and briefly discusses how

it functions.

In SVCCA, a series of activations of a neuron is treated

as a vector and the model’s layers are treated as subspaces

that those vectors will span. SVCCA is able to compare the

learned representations of any two layers and tell whether

or not they have learned the similar or different representa-

tions. It does this by combining Singular Vector Decompo-

sition (SVD), which reduces the dimensions of layer sub-

spaces, and Canonical Correlation Analysis (CCA), which

maximizes a projection between the two layers that re-

sults in the highest correlation. This process allows lay-

ers with different configurations of weights, neurons, biases

and activation functions to be analyzed. For a given dataset

X = {x1, ..., xm} and a neuron i on layer l the output of

that neuron on the entire dataset is defined as the vector zl
i
.

SVCCA takes input from two layers l1 = {zl1
1
, ..., zl1

n1
}

and l2 = {zl2
1
, ..., zl2

n2
} where n1 and n2 are the number

of neurons in their respective layers. SVD is performed on

each layer to get new subspaces l′
1

and l′
2

where l′
1
⊂ l1,

l′
2
⊂ l2. Next, l′

1
and l′

2
are linearly transformed to be as

aligned as possible and correlation coefficients are calcu-

lated. SVCCA outputs aligned directions (z̃l1
i
, z̃l2

i
) and how

well they correlate. The higher the correlation value ρi is,

the more similar the two aligned directions are.

In this study, we primarily focus on the SVCCA similar-

ity ρ̄. ρ̄ is the mean of the ρi values from the top CCA di-

rections and essentially describes how similar the represen-

tations of two layers are with each other. The ρ̄ values can

be used to observe how the learned representations change

overtime if similarties of layers are calculated at different

time steps. In other words, we use layer similarities as the

metric to evaluate the changes in learned representations as

models undergo the pruning and retraining process.

4. Pruning Methods

Despite various pruning methods published in the litera-

ture, we only evaluate three unstructured pruning methods

(magnitude based pruning, post-pruning re-initialization,

and random sparse re-initialization) in this study. They are

carefully selected to focus on answering the key questions

about pruning: 1) do the representations remain identical

during the pruning and retraining process? 2) How impor-

tant is it to carefully design pruning methods? 3) How im-

portant is the structure learned from the pruning process

4.1. Magnitude Based Pruning

The magnitude based pruning presented by [5] serves as

the baseline method, which first trains an original model

to convergence, then prunes each layer by removing the

weights with the smallest absolute value until the desired

sparsity is reached, and finally retrains the pruned model to

recover to a similar accuracy as the original model. The im-

portant distinction between our method and Han’s approach

[5] is that pruning is done layer by layer (not globally on

the whole model). We use both an iterative and single shot

pruning method, which aims to identify what knowledge is

carried over from the original model. We also omit pruning

the final fully connected layer as it represents only a tiny

portion of the overall weights of a model. We speculate that

magnitude based pruning would result in the most similar

representations to the original model across layers.

4.2. Post­Pruning Re­initialization

The post-pruning re-initialization method makes copies

of each magnitude based pruned model, reinitializes the all

variables, but keeps the mask from the magnitude based

method. In this way the topology of the pruned network

is preserved and the network is trained from scratch for the

same number of epochs as the baseline model. The post-

pruning re-initialization method is specifically designed to

find out: 1) how much capacity is needed for training; 2) if

restricting weights to a learned topology will result in more

similar representations to the original; and 3) if this topol-

ogy uncovered by pruning encodes important information

about the original model and helps improve models trained

from scratch.

4.3. Random Sparse Initialization

To measure the efficacy of the post-pruning re-

initialization method, we compare it with a model initial-

ized to the same sparsity where the pruned weights are

chosen at random. For each layer in the original model,

we randomly prune an index from its weights until the de-

sired sparsity is reached. We then allow those models to

train for the same number of epochs as the baseline model.

Random sparse initialization sheds lights on how models

can be taught when their capacity is reduced in perhaps

the least advantageous way possible. The random selec-

tion of weights ensures that it cannot take advantage of any

architectural structure advantage, and the process may po-

tentially remove important components.

5. Experimental Results

This section presents a series of experiments that are

specifically designed to answer the following key questions:

1) Is pruning truly a compression process? 2) Does pruning

work for untrained neural networks? 3) Do learned sparse

917



structures carry important information? For each question,

we restate the hypothesis, explain the detailed experiments,

discuss the results, and finally draw our conclusions.

5.1. Question 1: Is Unstructured Pruning Compres­
sion?

The conventional wisdom believes that pruning is merely

a compression process, in which the redundant information

is removed and the key network structure is preserved. In

fact, almost all existing literature refer pruning as a com-

press technique for neural networks. The recently published

”Lottery Ticket Hypothesis” [4] claimed that successfully

trained large networks contain wining tickets from the be-

ginning. The winning tickets refer to the sub-networks that

have connections and initial weights that make training par-

ticularly effective. Therefore, the pruning process is just a

lucky draw that helps to find the wining ticket. If pruning

is merely a compression process, a neural network should

learn no or minimal new knowledge while being pruned.

As a result, the learned representations among all layers

and models should have very high similarities (e.g. close

to 100%). However, as the authors themselves noted in [4],

the discovered lottery ticket winning sub-nets have weights

that change the most during the retraining process.

Figure 2: Similarity distributions for Pruned Magnitude

ResNet-34 as compared to the original model.

To verify if pruning is truly compression or not, we

design and conduct an experiment as follows. We train

the original ResNet and VGG models using CIFAR-10 and

CIFAR-100 datasets to serve as the baseline. The represen-

tations of each layer are recorded and analyzed using the

SVCCA tool. Once the baseline model has been trained,

we prune it in two ways: 1) iteratively using the magnitude

based pruning method, and 2) at incremental sparsity levels

of 30%, 45%, 60%, 75% and 90% using magnitude based

pruning, post-pruning re-initialization, and random sparse

re-initialization. This allows us to observe how models re-

act from moderate pruning towards intensive pruning where

Figure 3: Similarity of 90% sparse ResNet during retrain-

ing. Similarities are calculated with respect to the initial

state of the model before retraining (note: additional parts

of the computation graph like batch normalization and skip

layer additions are also calculated resulting in a layer count

greater than 50).

Figure 4: Similarities of VGG layer by layer at different

sparsities resulting from iterative pruning. Layers go from

left to right with the left most squares being the first con-

volutional layer and the last three being the fully connected

and softmax layers.

they could no longer maintain the desired accuracy. When

all pruned models have finished training, we evaluate their

accuracy, record their representations, and analyze the simi-

larities using the SVCCA tool. We construct the input func-

tion in a way that grantees each model to see the exact same

images in the same order, which is critical for preserving

the consistency of learned neuron vectors. Lastly, we calcu-

late the SVCCA similarity value ρ̄ for each layer and use it

as the metric to fairly compare the similarities of different

representations.

Figure 2 shows the SVCCA similarity value distributions

918



for iteratively pruned magnitude ResNet-34 as compared to

their original models. We can observe that the learned rep-

resentations of moderate pruning (e.g. 30% of sparsity) re-

main relatively similar with the original model. However,

the more aggressively (i.e. the higher the sparsity) a model

is pruned, the less similar its learned representations are to

the original model it is derived from.

We also investigate in what ways the models are chang-

ing while they undergo pruning. Figure 3 shows the simi-

larities using a heatmap for the 90% sparsity model’s layers

in different epochs while retraining ResNet. This allows us

to obtain visual insights about the evolutionary process the

model undergoes to regain its accuracy. We observe that the

filters that are closer to the output, where presumably high

level class features are located, change at the fastest pace.

The high level layers reach a steady state in the earliest time

and propagate backward to the earlier layers in the model.

This is different from the observations reported in [15] for

models that are training from scratch, where the lower level

layers converge to their final representations first. We be-

lieve our results complement [15] well with Google’s re-

sults by showing how pruned models must repair their high

level representations first during the retraining process. In

addition, an interesting stripping pattern is observed in the

similarities, which is the result from the residual block of

ResNet. While further investigation is needed to understand

the phenomena, we speculate it is easier for the model to

discard the information between the skip connections than

to repair the damage to the layers caused by pruning. Fig-

ure 4 contains a similar visualization for layer similarities of

VGG at different sparsities compared to its original model.

Figure 4 shows that the first two convolution layers main-

tain high similarities in both data sets similar to ResNet’s

first few layers. The CIFAR-10 VGG model has a pattern of

propagating change similar to the ResNet CIFAR-10 model,

while the CIFAR-100 model has noticeably more disruption

in the middle layers at all sparsity values.

These results clearly demonstrate that pruning does not

always result in the same representation. Actually, the ag-

gressive pruning seems to force the network to adapt to the

dramatically changed environment. As a result, the learned

representations evolve to a new form, probably a more ef-

fective one than the originally learned representation. These

observations are controversial to the traditional compres-

sion theory which treats pruning as a passive process with-

out much of new learning.

5.2. Question 2: Does Pruning Work for Untrained
Neural Networks?

It is the common belief that a complex model should be

trained with full capacity first before it can be pruned for

better efficiency and initialized sparsity in an untrained neu-

ral network is unlikely to succeed. To test this hypothesis,

we conduct an experiment with sparsly intialized models to

see if pruning before training is a viable option, and if so

how much model capacity is needed for training. In this ex-

periment, we use the post-pruning re-initialization method.

First a baseline mode is trained using TensorFlow and either

the CIFAR-10, or CIFAR-100 dataset. Once the baseline

model is finished training, the model is pruned to incremen-

tal sparsity levels of 30%, 45%, 60%, 75% and 90%. We

take those pruned models and reinitialize all of their values,

but leave their sparse structures, and let them train for the

same number of epochs as the baseline model. Table 1 and

2 show the results of the post-pruning re-initialization accu-

racy as it compares to the original model, from which we

can observe that full capacity is not always needed to train

a model from scratch. For all but the most extreme level of

pruning (e.g. 90% sparsity), the models can be trained to

very similar accuracy as the baseline model. Furthermore,

as demonstrated in Table 1, the sparsely initialized models

perform equally well and sometimes even better than the

original magnitude based pruning strategy for ResNet and

ConvNet models.

VGG, however, is an exception. The accuracy of VGG

(with initialized sparsity pruning) drops significantly when

the sparsity goes beyond 45% (e.g. 10% for CIFAR-10 and

1% for CIFAR-100) and even the magnitude based method

drops to 1.1% at 90% sparsity (see Tables 1 and 2). This

indicates that sparsities over 45% prevents the VGG model

from learning. The recorded test accuracies become only

as good as random guessing for both datasets. We tried to

adjust the learning rates and reduce or remove the drop out

layers, but none of these changes helped the model to learn

anything meaningful.

This is interesting because the ConvNet is similar in de-

sign philosophy to the VGG model. It has 2 convolutional

layers, 2 fully connected layers, and a softmax layer. If re-

dundancy of a model is measured only in number of weights

or layers, then the VGG model should be able to survive

from more aggressive pruning and still learn. These results

agree with the observation by [11] that redundency in VGG

is not evenly distributed. We believe ResNet is able to sur-

vive these catastrophic collapses during training with ini-

tialized sparsity because of its skip connections in the resid-

ual blocks. If a single convolution layer is broken or prob-

lematic, its deep network is capable of bypassing the layer.

Comparing the accuracies of the iterative pruning meth-

ods in Table 3 to that of the single pass magnitude prun-

ing and pre-initialized sparsity methods in Tables 1 and 2,

we observe that the real advantage iterative methods have is

increasingly better initialization for the model weights and

substantially larger training budgets. The original VGG pa-

per [19] explicitly explained how sensitive VGG is to initial-

ization, going as far as to train a smaller model to warm start

the larger VGG-16 and VGG-19. This may also explain

919



Accuracy

Sparsity Ref (0%) 30% 45% 60% 75% 90%

ResNet-34

Mag. 92.6% 92.4% 92.5% 91.9% 91.2% 87.2%

Re-Init. 92.6% 92.1% 92.0% 90.8% 89.9% 88.4%

Rand. 92.6% 92.4% 91.8% 91.1% 90.2% 87.2%

VGG-16

Mag. 88.7% 88.7% 88.6% 88.2% 87.4% 10.0%

Re-Init. 88.7% 87.3% 86.9% 10.0% 10.0% 10.0%

Rand. 88.7% 87.0% 87.0% 10.0% 10.0% 10.0%

ConvNet

Mag. 86.3% 86.1% 85.8 86.0% 86.0% 83.6%

Re-Init. 86.3% 85.7% 85.6% 84.6% 84.3% 81.0%

Rand. 86.3% 86.0% 86.2% 85.2% 84.1% 80.1%

Table 1: Accuracy of single pass Pruned Models on CIFAR-

10

Accuracy

Sparsity Ref (0%) 30% 45% 60% 75% 90%

ResNet-34

Mag. 68.8% 68.2% 68.5% 67.6% 65.8% 54.4%

Re-Init. 68.8% 68.3% 67.5% 66.1% 65.4% 60.8%

Rand. 68.8% 68.2% 67.2% 66.4% 64.6% 60.5%

VGG-16

Mag. 56.7% 57.5% 57.25% 56.4% 50.1% 1.1%

Re-Init. 56.7% 53.1% 56.6% 1.0% 1.0% 1.0%

Rand. 56.7% 57.4% 56.2% 1.0% 1.0% 1.0%

ConvNet

Magn. 58.5% 58.5% 58.3 57.6% 58.1% 53.4%

Re-Init. 58.5% 57.9% 57.9% 58.0% 58.4% 58.4%

Rand. 58.5% 58.3% 58.0% 58.8% 58.0% 58.%

Table 2: Accuracy of single pass Pruned Models on CIFAR-

100

why iterative and single pass magnitude pruning are able

to succeed at higher sparsities while the initialized sparsity

methods can not.

These results overturn the conventional wisdom that

models must be first trained in full capacity before they un-

dergo pruning. When attempting to design efficient mod-

els, new methodologies thus can be developed to speed up

the pruning/training process by training models with some

amount of sparsity from the beginning.

Accuracy

Sparsity Ref (0%) 60% 70% 80% 90%

CIFAR-10
ResNet-34 92.6% 92.9% 93.0% 92.6% 91.7%

VGG-16 88.7% 89.2% 89.9% 88.5% 87.9%

CIFAR-100
ResNet-34 68.8% 69.3% 69.3% 68.5% 60.7%

VGG-16 56.7% 63.0% 63.4% 63.7% 63.4%

Table 3: Accuracy of Iteratively Pruned Models

5.3. Question 3: Do Learned Sparse Structures
Carry Important Information?

Figure 5: Similarity distributions for Post-Pruning Re-

initialization and Random Sparse Initaial ResNet-34 as

compared to the original model.

Sparse structures resulting from structured pruning as in

[11] has been demonstrated to have significant value. It is

less clear what if any value network topology that is a re-

sult of unstructured pruning has. We design an experiment

in this subsection to verify if the learned structure of the

sparsity is important and if random sparsity can yield good

accuracy.

In this experiment, we take the baseline model and ran-

domly select weights in each layer to prune until the de-

sired sparsity is reached. We prune to the same sparsities

described in the previous experiment, and allow the model

to train for the same number of epochs as our baseline

model. Tables 1 and 2 compares the results of the learned

pre-pruning method to the random pre-pruning method. In

contrast to [11]’s findings for structured sparsity, there is

virtually no distinction in performance between our random

sparse initalized and post-pruning re-initialization methods.

Our random initialized sparsity method does nearly as well

or better than the post-pruning initialized method at all spar-

sities. ResNet-34 model preforms only 1% less in accu-

racy compared with the time-consuming magnitude based

pruning method at the different sparsity levels. It also per-

forms as well as magnitude based pruning methods at the

90% sparsity level for CIFAR-10 and outperforms mag-

nitude based pruning for CIFAR-100. We also show that

models that have prior knowledge of good sparse structures

do not necessarily preform better. The only requirement

is not to be over-aggressive for capacity (e.g. use 90% or

higher sparsity). As long as moderate amounts of weights

are available, the model will find a way to adapt and over-

come its lower capacity and still learn. This indicates that

not only can pre-pruning be effective, but it can be easily

implemented using randomness.

We have already demonstrated that post-pruned re-

initialized models do not have any significant difference in

performance to randomly intialized sparse models. Purhaps

as [4] suggest the data intensive process of unstructured

pruning will create a sparsity structure that contains a cer-

tain bias. To further investigate if the learned sparsity struc-

tures carry valuable information, we analyze the SVCCA

similarity value distributions for the post-pruning initialized

and random initialized ResNet-34 models compared with

the original ResNet-34 model (see Figure 5). It can be ob-

920



served that the median similarity values of the representa-

tions are less than 50% at all sparsities and the distinction

between the randomly initialized and post-prune initialized

methods is negligible. We also observe that as the level

of sparsity increases, the similarities of post-prune initial-

ization actually decreased (it should increase if the sparse

structures really carry important information), which indi-

cates that the learned sparse structures do not carry valuable

information.

6. Conclusion

As an effective technique to reduce the size of modern

neural networks, pruning has been extensively studied in re-

cent years. However, the current understanding about prun-

ing is still in its early stage with numerous misconceptions

and inappropriate hypotheses. This paper explores several

fundamental questions about pruning and strives to find out

1) if pruning is truly compression; 2) if pruning can work on

untrained neural networks; and 3) if sparsity structures from

unstructured pruning provide valuable information. The

following conclusions can be drawn from our experiments

and observations.

First, after analyzing the similarities of various learned

representations using the SVCCA tool, we find that prun-

ing is not a passive compression process without learning

new knowledge. Rather, the pruned model is capable of

evolving proactively to survive in a dramatically changed

environment, which is done by learning and transforming

to more effective representations when aggressive pruning

is occurring.

Second, our results indicate that initialized sparsity can

work for untrained neural networks with certain architec-

tures or capacities. Taking advanced knowledge from one

model (e.g. which weights are important) and using it to

train another model will not result in any significant perfor-

mance gains when training.

Third, we observe that the sparsity structure from the

post-pruning re-initialization is not inherently useful or

meaningful. Random initialized sparse models perform

equally well compared to post-pruning re-initialized sparse

models. The similarity of their layer representations share

almost no connection or valuable information to the origi-

nal models where they derive from. This is in contrast to

structured pruning where the discovered structures can be

used to train efficient models from scratch.

ACKNOWLEDGMENT

The work reported in this paper is supported by the U.S.

National Science Foundation under Grant No.

CNS-1908658.

References

[1] S. Anwar, K. Hwang, and W. Sung. Structured pruning of

deep convolutional neural networks. In arXiv preprint

arXiv:1512.08571, 2015.

[2] W. Chen, J. Wilson, T. S., W. K. Q., and C. Y. Compressing

neural networks with the hashing trick. In JMLR workshop,

2015.

[3] Y. Cheng, D. Wang, P. Zhou, and T. Zhang. A survey of

model compression and acceleration for deep neural

networks. IEEE Signal Processing Magazine, 2018.

[4] J. Frankle and M. Carbin. The lottery ticket hypothesis:

Finding sparse, trainable neural networks. In International

Conference on Learning Representations, 2019.

[5] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both

weights and connections for efficient neural networks. In

NIPS, 2015.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2015.

[7] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up

convolitional neural networks with low rank expansions. In

BMVC, 2014.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS. 2012.

[9] V. Lebedev and V. Lempisky. Fast convnets using

group-wise brain damage. In CVPR, 2016.

[10] Y. Lecun, J. S. Denker, and S. A. Solla. Optimal brain

damage. In NIPS, 1990.

[11] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell.

Rethinking the value of network pruning. In International

Conference on Learning Representations, 2019.

[12] Z. Mariet and S. Sra. Diversity networks. In ICLR, 2016.

[13] S. Narang, G. F. Diamos, S. Sengupta, and E. Elsen.

Exploring sparsity in recurrent neural networks. In arXiv

preprint arXiv: 1704.05119, 2017.

[14] A. Polyak and L. Wolf. Channel-level acceleration of deep

face representations. In IEEE Access, 2015.

[15] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein.

Svcca: Singular vector canonical correlation analysis for

deep learning dynamics and interpretability. In NIPS, pages

6076–6085, 2017.

[16] R. Rigamonti, A. Sironi, V. Lepetit, and F. P. Learning

separable filters. In CVPR, 2013.

[17] A. See, M.-T. Luong, and C. D. Manning. Compression of

neural machine translation models via pruning. In CoNLL,

2016.

[18] W. Shang, K. Sohn, D. Almeida, and H. Lee. Understanding

and improving convolutional neural networks via

concatenated rectified linear units. In ICML, 2016.

[19] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[20] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015.

921



[21] C. Tai, T. Xiao, and X. Wang. Convolutional neural

networks with low-rank regularization. In arXiv preprint

arXiv:1511.06067, 2015.

[22] S. Zhai, Y. Cheng, W. Lu, and Z. Zhang. Doubly

convolutional neural networks. In NIPS, 2016.

[23] H. Zhou, A. J. M., and P. F. Less is more: Towards compact

cnns. In ECCV, 2016.

922


