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Abstract

The success of video action recognition based on Deep

Neural Networks (DNNs) is highly dependent on a large

number of manually labeled videos. In this paper, we in-

troduce a supervised learning approach to recognize video

actions with very few training videos. Specifically, we pro-

pose Temporal Attention Vectors (TAVs) which adapt vari-

ous length videos to preserve the temporal information of

the entire video. We evaluate the TAVs on UCF101 and

HMDB51. Without training any deep 3D or 2D frame

feature extractors on video datasets (only pre-trained on

ImageNet), the TAVs only introduce 2.1M parameters but

outperforms the state-of-the-art video action recognition

benchmarks with very few labeled training videos (e.g. 92%

on UCF101 and 59% on HMDB51, with 10 and 8 training

videos per class, respectively). Furthermore, our approach

can still achieve competitive results on full datasets (97.1%

on UCF101 and 77% on HMDB51).

1. Introduction

The use of Deep Neural Networks (DNNs) in the field of

computer vision has expanded significantly in recent years.

For video action recognition, several frameworks [5, 6, 35]

have shown outstanding performance. The success of these

approaches largely sustained by the manual annotation of

the large-scale datasets. However, it is still challenging to

recognize human actions with very few manually labeled

training videos. There are several attempts to deal with this

problem. Srivastava et al. [30] trained a Long Short-term

Memory (LSTM) with the fixed number of unlabeled video

frames to predict future frames of that video then fine-tune

it for the supervised video action recognition. However, it

still needs a large number of videos to train which brings

huge computational overhead. Zhu et al. [45], Mettes et

al. [24] and Jain et al. [12] attempted to recognize actions

without any observed data or with only few labeled data

(Zero/Few-Shot Learning). These approaches classify the

actions by measuring the similarity (e.g. Euclidean dis-

tance) between the visual representations and the semantic

representations in the embedding space. However, these

approaches require additional linguistic contexts or visual

representations of objects and the accuracy is heavily

dependent on the precise representation of the additional

information.

In this paper, we aim to adopt supervised learning to

recognize human actions with very few manually annotated

training videos. Recent works such as [7, 36, 41] pointed

out that long term dynamics and temporal patterns are very

important cues for the recognition of actions. The key

challenge is to generate a video descriptor that precisely

captures the important video-wide temporal correlation

among frame features with a small number of training

parameters. Some current Convolutional Neural Networks

(CNNs) based researches are either using sub-sampling

[41] or longer video clips [36] to capture the video-wide

temporal dynamics. However, these works only preserve

partial temporal information of the video. Some other

approaches adapt ranking functions [7] or Recurrent

Neural Networks (RNNs) [1, 4] to preserve the temporal

information. However, they introduce too many training

parameters that cannot be trained well in the circumstance

of only having very few training videos. Another work

[9] generates the video descriptor by clustering the pixels

in all frame features maps both spatially and temporally

with k-means clustering algorithm. However, this approach

cannot preserve the temporal information of videos.

In this paper, we propose Temporal Attention Vectors

(TAVs) which adapt to various lengths of videos to encode

the correlation among frame features. The frame features

are either manually defined or generated by an ImageNet

pre-trained CNN. The initial value of TAVs are manually

defined and each TAV highlights a certain period of the

video by giving them higher temporal weights than others.

After that, the TAVs are aggregated by their importance

scores which are learned by a shallow CNN. There are three

keys advantages to use TAVs. First, the TAVs capture the

video-wide dynamics of the video. Unlike the current end-

to-end trainable frameworks, the TAVs encode the temporal

correlation between all frames, which is important espe-

cially with only very few training videos. Second, the TAVs
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Figure 1: The working procedure of TAVs. The CNN which is used as the frame feature extractor pre-trained on ImageNet

and the weights are frozen during the task, e.g. not trained on the video dataset. “⊗” denotes matrix multiplication, “⊙”

denotes the element-wise multiplication and “Σ” denotes the addition. vk denotes the initialized TAVs, sk denotes the

importance score for the kth TAV and W denotes the linear embedding weights matrix. α denotes k × 1 convolution and Θ
denotes the linear embedding operation. Here, we show the base importance learner, the inflate-shrink learner can be done

by adding one convolution layer with 32 1× 1 filters. We use a fully connected layer with softmax function as the classifier.

can model complex temporal patterns. The static temporal

weights cannot correctly express the temporal patterns of

actions. For example, actions “run” and “long jump” have

different patterns, we only need to focus on “run” action for

the prior one but need focus on both “run” and “jump” for

the latter one. By studying the importance scores, the TAVs

can simulate different temporal patterns. Third, the TAVs

only introduce few training parameters. With insufficient

training samples, a deep neural network (many training

parameters) is hard to learn the true temporal patterns

of actions. Only few training parameters (importance

scores) makes TAVs could capture more accurate temporal

pattern than the deep network with very few training videos.

2. Related Works

Capturing the spatiotemporal information of videos for

action recognition has been a well-studied research do-

main. Historically, researchers have mostly focused on the

handcrafted spatiotemporal features of Space-Time Interest

Points (STIP) [20]. Most successful examples are 3D His-

togram of Gradient (HOG3D) [17], Histogram of Optical

Flow (HOF) [21], and Motion Boundary Histogram (MBH)

[3]. Also, the trajectory-based approaches [14, 23, 32, 38,

39] have shown a significant improvement in action recog-

nition.

More recently, the CNN-based end-to-end fashions have

been widely applied to the video action recognition area and

shown the outstanding performance. These approaches can

be roughly separated into two categories. The first category,

which extends the CNNs to a third, temporal dimension by

replacing the 2D filters with 3D ones [2, 13, 34, 35, 37]

to capture the spatiotemporal information from fixed length

video clips. The second category initially processes color

and optical flow information in parallel for subsequent late

fusion of their separate classification scores [28]. Several

improvements were proposed based on this work. For ex-

ample, Wang et al. [40] extracted deep features and con-

ducted trajectory constrained pooling to aggregate convo-

lutional features as video representations. Feichtenhofer et

al. [6] tried different two-stream fusion approaches to fuse

the two streams. Carreira and Zisserman [2] recently intro-

duced a model (I3D) that combines two-stream processing

with 3D convolutions.

An alternative solution models the temporal structure of

video by various pooling approaches [8, 15, 43], rank func-

tions [7], k-means clustering [9] and different distributions

[25, 26, 27]. Recurrent Neural Networks have also been

used to encode temporal information for learning video rep-

resentations [4, 30, 31, 33, 42]. Donahue et al. [4] used the

LSTM together with CNN to either output an action label

or a video description. Srivastava et al. [30] proposed to

learn video descriptions with the encoder-decoder LSTM in

an unsupervised manner.

Our work is similar to the temporal structure filters in

[26]. They train Cauchy distributions to detect multi-actions

in videos. The centers and width of Cauchy distributions are

initialized by some trainable and uniformly selected “seed”

between −1 to 1 then scaled according to the length of

videos and exponential function, respectively. On the con-

trary, our approach initializes both center and width accord-

ing to the length of video and studies the importance scores

instead of learning the distribution parameters themselves.
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We compare temporal structure filters with TAVs in Sec-

tion 5.

3. Temporal Attention Vectors

To recognize actions with very few training samples, the

video representation should preserve video-wide temporal

information meanwhile the generation procedure of the rep-

resentation should involve only small number of training

parameters.

We now describe the TAVs which are shown in Fig-

ure 1. We denote a video as X = (x1, x2, . . . , xT ), where

xt ∈ R
W×H×C and t = [1 : T ]. We use W and H to rep-

resent the width and height of the frame respectively. Each

frame either represents an RGB image (C = 3) or a hori-

zontal / vertical optical flow image (C = 1). The length T

usually varies for different videos. We use φ(xt) ∈ R
D to

represent the feature of frame xt, where φ represents the op-

erations of a CNN (the frame feature extractor). The video

representation is generated with two steps: i). The frame

features (φ(x1), φ(x2), . . . , φ(xT )) are aggregated with the

elements of K TAVs {v1, v2, . . . vK}, where vk ∈ R
T and

initial values are manually defined. ii). All aggregated fea-

tures are added with the importance scores s for each TAV

then linear embedded with weight W to form the video rep-

resentation. s and W are learned by a convolution layer

and a fully connected layer, respectively. More formally,

we rewrite the above operations as follows:

D = W ⊗

K∑

k=1

T∑

t=1

skφ(xt)vt,k, (1)

where vt,k is the tth element in the kth TAV vk, sk is the

importance score for the kth TAV and ⊗ denotes the matrix

multiplication.

The TAVs is able to study the temporal pattern with very

few training videos because of the follows. i). It encodes

video-wide temporal information by using multiple TAVs

which adapt to the various lengths of frame sequences and

not introduce any training parameters. ii). It is able to select

the important temporal information by studying the impor-

tance scores. In the following of this section, we provide the

details of how to initialize the TAVs and the architecture of

the shallow CNN that is used to study the importance scores

of the TAVs.

3.1. Initialization of the TAVs

The static pooling approaches (e.g. average pooling) fail

to preserve the sequential information of the frame features.

We propose to encode the video-wide temporal information

by calculating the weighted sum of all frame features. The

weights are the elements of the TAVs which adapt to var-

ious length of videos. We introduce several initialization

approaches of the TAVs below and leave the experiments in

appendix.

Random. One simplest way to initialize the TAVs is uni-

formly choosing them from the interval (0, 1) (Figure 2a).

More formally, let L denotes a number larger or equal to

the frames number of the longest video in a dataset, we can

choose the temporal attention weights as follows:

ak = [a1,k, a2,k, . . . , aL,k], k = [1 : K],

al,k ∼ U(0, 1), l = [1 : L],

vk = [v1,k, v2,k, . . . , vT,k],

vt,k =
eat,k

∑T

t=1
eat,k

.

(2)

We normalize the weights in vk such that let they sum up

to 1 to eliminate the impact brought by the various length

of videos. For example, as the video length increases, the

weights for each frame feature become smaller. Therefore,

the same action represented with the various number of

frames will not be misclassified.

Single Switching Distinguishable (SSD). An alterna-

tive way is using the combination of a constant sequence

and the strictly monotone sequences as the initial values of

the TAVs, which are shown in Figure 2b, to distinguish a

single pair of frames switching (e.g. X1 = (x1, x2, x3) and

X2 = (x1, x3, x2). The elements in the constant sequence

are all c and the elements in strictly monotone sequences

are randomly chosen from U(0, 1) then sort with ascending

or descending orders. Same as the random initialization, we

normalize the weights in vk. The approach can be formally

represented as follows:

v1 = [c, c, . . . , c],

ak = [a1,k, a2,k, . . . , aL,k], k = [2 : K],

al,k ∼ U(0, 1), l = [1 : L],

sort(ak),

vk = [v1,k, v2,k, . . . , vT,k],

vt,k =
eat,k

∑T

t=1
eat,k

.

(3)

By using these TAVs, it is obvious that the switching or-

der of single pair of frames could be detected by the TAVs

based on a reasonable assumption that the frame features of

two different frames are different.

Dynamic Gaussian (DG). This TAVs initialization ap-

proach is based on the following observations: i). The “key”

frames (the most important frames for classification task)

that are used to represent an action are consecutive. ii).

These key frames form only a clip rather than the entire

video. iii). The number of key frames that are needed to

represent different actions varies. Based on the above ob-

servations, we propose a way to initialize the TAVs from

the Probability Density Function (PDF) of Gaussian Distri-

butions. The results are shown in Figure 2c. We evenly
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Figure 2: The illustration of TAVs which are initialized by

different approaches.

divide a video into several clips and use the TAVs high-

light each of them. The TAVs give the higher temporal

weights for the frame features in the clip and lower weights

for the frame features out of that clip. The mean and stan-

dard deviation are dynamically selected based on the length

of the video clips. Specifically, we evenly partition the

frame number sequence (1, 2, . . . , T ) of the video X into

K chunks {C1, C2, . . . , CK}. For each chunk, we choose

the element in the middle position as the mean µk and use

the length of the chunk len(Ck) divide by a factor θ as the

standard deviation αk. More formally, these operations can

be formulated as:

vk = [v1,k, v2,k, . . . , vT,k], k = [1 : K],

vt,k = PDF (t|µk, α
2

k), t = [1 : T ],

µk = Ck(
len(Ck)

2
), αk =

len(Ck)

θ
.

(4)

The DG initialized TAVs highlight different clips cross the

entire video, but each of them encodes the video-wide tem-

poral information.

Short-Long Dynamic Gaussian (SLDG). This initial-

ization approach is inspired by the DG approach. The orig-

inal DG can only highlight certain range of temporal infor-

mation of a video. However, we are able to highlight shorter

or longer ranges of temporal information by decreasing or

increasing the standard deviation value in the DG gener-

ation approach, respectively (Fig 2d). More formally, we

define a set of chunk numbers m = {m1,m2, . . . ,mN}.

Then we repeat the DG vector generation approach N times

and use mn as the chunk number in the nth iteration. Thus,

the total number of temporal vectors is m1+m2,+ . . .mN

and the value of standard deviation is dynamically defined

by mn.
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Figure 3: The architecture of the importance score learner.

3.2. Importance Score Learner

The importance score learner is used to generate video

descriptor which contains important temporal information

based on the aggregated frame features. We propose two

types of learner. i). Base learner: scores of TAVs are

directly learned by a single convolution layer (Figure 3a).

ii). Inflate-shrink learner: The dimensionality of aggregated

frame features is first expanded using 1 × 1 convolution

then compressed into a single one as shown in Figure 3b.

The base learner has a single convolutional layer

with one K × 1 filter and the inflate-shrink learner has 2
convolutional layers with 32 and 1 filter response maps

with 1 × 1 and K × 1 filters for the first and second

convolutional layers, respectively. All convolutional layers

are followed by a batch normalization layer and a rectified

linear unit (ReLU). Filter stride for all dimensions is 1 for

convolution operations. Then we apply 1 fully connected

layers of sizes 1024 for both learners. We use ReLU after

the fully connected layers.

4. Implementation Details

The architecture of entire framework is shown in Fig-

ure 1. We adopt all convolution blocks and the global pool-

ing layer of the ImageNet [18] pre-trained ResNet-152 [11]

and I3D [2] as the backbone networks (frame feature extrac-

tors). The weights for the extractors are shared and frozen

for all experiments. The final video descriptor is predicted

using a fully connected layer with softmax function.

4.1. Input Configuration

We use the same input configurations for both training

and testing in our experiments. The frame extractor gener-

ates the features for both RGB frames and the optical flow

images. The optical flow images [44] are pre-computed and

stored as JPEG images (with displacement vectors > 20
pixels clipped). We follow the data argumentation from
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Figure 4: Three spatial and temporal fusion approaches.

[41]. We randomly crop from the four corners and the cen-

ter of input images and sample the width and height of each

crop randomly as W,H ∈ {256, 224, 192, 168}, followed

by re-sizing to 224× 224. The argumentation is applied for

both original and horizontal flipped images.

4.2. Two Streams Fusion

Since our framework adopts the two-stream architecture

which takes RGB and optical flow fields as inputs. We con-

sider three ways to fuse the spatial and temporal streams.

The detailed comparison is shown in appendix.

Early concatenation. As shown in Figure 4a, the im-

portance scores of both spatial and temporal TAVs are stud-

ied by single learner. In this case, the input of the learner

F ∈ R
K×3D.

Late fusion. In contrast with the early concatenation ap-

proach, we study the importance scores of spatial and tem-

poral TAVs separately by two learners. The input for the

temporal learner is F ∈ R
K×D×2. The class scores of the

spatial and temporal streams are combined by late fusion as

the final class scores as illustrated in Figure 4b.

Short-Long term fusion. This fusion approach is de-

signed for the SLDG initialized TAVs. As shown in Fig-

ure 4c, this approach learn the importance score of TAVs

for different temporal periods separately by adopting mul-

tiple learners. The spatial and temporal TAVs share same

importance score (same as the early concatenation). The

class scores of the different terms are then late fused as the

final class score.

4.3. Training and Testing

The training procedures are depended on different fu-

sion approaches. For the early concatenation and short-

long term fusion, we use the batch size of 64 which are

randomly selected (uniform across all video samples). The

initial learning rate is set to 10−5 and reduce by a factor of

10 after the validation error saturates. The training stopped

when the learning rate reaches 10−8. For the late fusion, we

first separately train both streams then train them together as

in [28]. The learning rate starts at 10−4 and is reduced by

a factor of 10 two times after the validation error saturates.

When train two streams together, we set the learning rate as

10−5 and reduce by a factor of 10 after the validation error

increases. We stop the training when learning rate reaches

10−8. The batch size is 128 for single stream training and

64 for two streams together. The kernel and bias weights

are all initialized by Xavier initialization [10]. The learner

weights are learned using the Adam algorithm [16]. During

the testing, the class scores for the whole video are obtained

by averaging the scores across the inputs.

5. Experiments and Results

In this section, we first introduce the evaluation datasets

then we provide detailed analysis of the effectiveness of dif-

ferent TAVs initialization, fusion approaches and the inflate-

shrink structure. Finally, we compare the performance

of our method to the state-of-the-art on the datasets with

change in the size of training videos and the full datasets.

5.1. Datasets

We evaluate our approach on two popular action recogni-

tion datasets. First, UCF101 [29], which consists of 13320
action videos in 101 categories. The second dataset is

HMDB51 [19], which contains 6766 videos that have been

annotated for 51 actions. For both datasets, we use two dif-

ferent set of training/testing splits: i). the official splits,

ii). the smaller splits. The official splits is provided by the

datasets. For the smaller splits, we uniformly choose var-

ious number of videos from the official training splits for

each action and the testing splits are the same as the official

one.

There are two main reasons that we choose UCF101 and

HMDB51: a. our object is action recognition under very

few training data scenario. If there are enough data (e.g.

Kinetics [2]), the 3D-CNNs (e.g. I3D, I2+1D networks) are

the better choices, b. we only find [30] have done the simi-

lar task. For a fair comparison, we choose the same datasets

as them.
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5.2. Evaluation of the Effectiveness of TAVs and
Importance Score Learners

In this section, we investigate the effectiveness of TAVs

and importance score learners (Section 3), the average ac-

curacies are reported in Table 1. We choose the DG ini-

tialized TAVs (K = 4) to encode the frame features and

evaluate the performances. The value of θ is set to 2 since

we find it results the best performance. In the following ex-

periments, we use θ = 2 as default for DG vectors. We fol-

low the training and testing procedures as described in Sec-

tion 4. In Table 1, we can see applying DG initialized TAVs

❵
❵

❵
❵
❵

❵
❵
❵

❵
❵
❵
❵

Aggregator

Backbone
ResNet-152 [11] I3D [2]

Average pooling 64.4 86.1

DG 68.1 89.1

DG + Base learner 70 89.5

DG + Inflate-Shrink learner 70.1 90.6

Table 1: Average accuracy (%) on the UCF101 split 1
(RGB) with different importance score learners and back-

bones. The experiments are repeated 10 times and each time

10 training videos are uniformly chosen for each class.

gives 3.7% and 3% accuracy improvements for ResNet-

152 and I3D backbones compare to the average pooling,

respectively. The accuracy is further increased by apply-

ing the score learner. For example, the performance im-

proves from 68.1% to 70% when use the base learner for

DG+ResNet152, and further increases 0.1% when apply the

inflate-shrink learner. When use I3D as the backbone, the

inflate-shrink learner yields 1.5% improvements compare to

only apply the pure DG initialized TAVs. In the following

experiments, we use the inflate-shrink learner as the default

choice.

We also evaluate the effectiveness of hyper-parameters

(TAVs number, initialization approaches, fusion approaches

etc.) with few training parameters. Please see appendix for

detail.

5.3. Comparison with state­of­the­art with Very
Few Training Videos

Methods # Parameter

St Multiplier (two-stream) [6] 85.8M

LSTM [30] 83.8M

TAVs (ours) 2.1M

Table 2: Parameter number of Spatiotemporal Multiplier

Networks, unsupervised LSTM and TAVs

In this section, we compare our model to other frame-

works on UCF101 and HMDB51 with change in the size of

the labeled training set. We use the same training sets for all

models. During the comparison of the TAVs initialization

approaches, we find the SLDG initialization with K = 3 (#

of TAVs) and m = (2, 1) (# of chunks for each iteration)

gives best results. We believe this is because the SLDG

catch both short and long temporal information of video. In

all following experiments, we use SLDG with this setting

as default choice.

The first model is the Spatiotemporal Multiplier network

[6]. The comparisons are shown in Figure 5a and Figure 5b.

Our model outperforms the Spatiotemporal Multiplier net-

work when only giving few labeled training videos. For

example, with only 10 labeled training video per class, our

model achieves 78.5% on UCF101 and 45.8% on HMDB51

which are 7.5% and 10.3% higher than the accuracy of Spa-

tiotemporal Multiplier network, respectively. Overall, our

model outperforms the Spatiotemporal Multiplier network

when the number of training videos per class is less than 60
and 40 on UCF101 and HMDB51, respectively. We also try

to use ResNet-152 for both spatial and temporal stream but

the accuracy is much lower than original model with very

few training samples. We believe the reason is the 152 lay-

ers ResNet contains much more parameters than 50 layers

one which is not suitable for the few shot task. The second

framework is the unsupervised LSTM [30] which is pre-

trained on a 300 hours YouTube data then transformed to the

supervised learning. For fair comparisons, our framework

also only use the RGB frames as inputs. The results are

shown in Figure 5c and Figure 5d. We notice that our model

slightly underperforms the LSTM when the size of the train-

ing set is extremely small (1 or 2 videos per class). We be-

lieve that is due to the LSTM is pre-trained on a large num-

ber of videos and this is confirmed when we using Kinetics

pre-trained I3D as frame feature extractor. As the size of the

labeled dataset grows, the gap becomes smaller. When the

number of training video per class is 4, our model has accu-

racy 58.2% on UCF101 and 29.5% on HMDB51 which are

higher than the unsupervised LSTM on both datasets. We

calculate the training parameters that are introduced by the

importance score learner, since the only training procedure

is applied on the learner. As shown in Table 2, the TAVs

only introduce 2.1M parameters, which is 97.5% and 97.4%
smaller compare to the Spatiotemporal Multiplier Network

and unsupervised LSTM, respectively.

Instead of using 2D network as the backbone, we also

evaluate the TAVs with 3D frame feature extractor. We use

I3D [2] as the backbone and compare the performance of

TAVs with base I3D and Temporal Structure Filter (TSF)

[26] with few training videos. The results are shown in

Table 3. We use the authors provided codes for base I3D

and implement the TSF according to the paper. For the ex-

periments, all layers before the 3D average pooling layer

are frozen. We repeat the experiments 3 times and report
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Figure 5: Comparisons with the Spatiotemporal Multiplier Network ((a) and (b)) and fine-tuned unsupervised LSTM ((c)

and (d)) for action recognition with change in the size of the labeled training set on UCF101 and HMDB51 split 1. The

training videos are uniformly chosen for each action class. For the comparison with St Multiplier Network, the experiments

are repeated 5 times and the average accuracy (%) are reported for both TAVs and St Multiplier Network. For comparison

with the fine-tuned unsupervised LSTM, only RGB frames are used and the average accuracy of 10 times experiments are

reported.

# Training Videos
I3D [2] I3D+TSF [26] I3D+SLDG(2,1)

Round Acc Average Acc Round Acc Average Acc Round Acc Average Acc

UCF101

1 20.3 / 24.4 / 25.6 23.4 45.8 / 52.6 / 46.7 48.4 65.8 / 68.2 / 71 68.3

2 39.4 / 39.8 / 39.6 39.6 61.7 / 63.2 / 61.5 62.1 82.4 / 83.4 / 83.3 83

4 63.3 / 63.1 / 62.9 63.1 74.1 / 69.2 / 65.2 70 88.4 / 88.4 / 88.1 88.3

10 74.4 / 74.9 / 74.4 74.6 84.7 / 85.8 / 83 84.5 91.8 / 92.5 / 91.7 92

20 83.3 / 83 / 83.4 83.2 88.6 / 85.5 / 86.4 86.3 93.3 / 93.2 / 93.4 93.3

50 90.5 / 90.2 / 90.4 90.4 90.7 / 90.4 / 87.8 89.6 94.1 / 93.8 / 94 94

HMDB51

1 13.1 / 13.8 / 14.2 13.7 28.3 / 25.4 / 27.1 27 34.7 / 35.8 / 37.4 36

2 18.6 / 18.2 / 18.3 18.4 36.5 / 34.1 / 34.8 35.1 44.4 / 42.5 / 43.3 43.4

4 30 / 31.2 / 29.7 30.3 46.1 / 44.5 / 42.6 44.4 53.3 / 56.3 / 49.8 53.1

8 42.9 / 44 / 43.3 43.4 49.5 / 52 / 49.5 50.3 56.5 / 61.1 / 59.6 59

16 53.2 / 54.1 / 53.9 53.7 52.9 / 50.2 / 52.9 52 62.1 / 63.9 / 63.5 63.2

32 61.1 / 61.8 / 61 61.3 56 / 55.2 / 56.2 55.8 65.2 / 66.3 / 65 65.5

64 68.6 / 68.8 / 68.2 68.5 56.9 / 58.2 / 59 58 67.4 / 67.6 / 67.1 67.4

Table 3: Comparisons with I3D (left column) and Temporal Structure Filter (TSF) (middle column) for action recognition

with different number of training samples on UCF101 and HMDB51 split 1 (RGB). The experiments are repeated 3 times

and each time the training videos are uniformly chosen for each class. We report both round accuracies (left part of each

column) and average accuracy (right part of each column).

both round accuracies and average accuracy. In Table 3,

we can see that as the number of training videos increases,

the accuracies for all three frameworks also increase. The

TSF outperforms the base I3D when the number of training

videos < 50 and < 8 on UCF101 and HMDB51, respec-

tively. Our approach outperforms the base I3D and TSF

with all small training sets except when the number of train-

ing videos = 64 on HMDB51. We try to fully fine-tune the

I3D on both datasets. However, the results are much lower

than only train the fully connected layer with few training

videos. Furthermore, we also implement the TSF according

to the code provided by the authors (initialize the width of

Cauchy distribution according to the length of videos which

is different to the paper) and evaluate on HMDB51 with 8

training videos per class. It achieves 53.8 over three rounds

bu still 5.2% less than ours. We also compare our approach

with I3D on Diving48 dataset [22], see details in the ap-

pendix.

6. Comparison with the state-of-the-art on Full

Datasets

Finally, we compare our model to the state-of-the-art

action recognition results on full UCF101 and HMDB51

datasets. The performance is summarized in Table 4. The

table is divided into three sets. The first set compares mod-

els that use only RGB data. The second set compares mod-

els that use optical flow features only. Models in the third
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Methods Backbone Pretrain Fully Fine-tuning UCF101 HMDB51

Two-stream (spatial) [28] Two-stream ImageNet Yes 73 40.5

Two-stream (spatial) [6] ResNet-152 ImageNet Yes 83.4 46.7

Unsupervised LSTM (spatial) [30] LSTM 300 hrs vids of Sports-1M No 75.8 44.0

I3D [2] I3D ImageNet+Kinetics Yes 95.6 74.8

TSF [26] I3D ImageNet+Kinetics No 91.1 60

Ours ResNet-152 ImageNet No 83.2 58.9

Ours I3D ImageNet+Kinetics No 95 69.8

Two-stream (temporal) [28] Two-stream - Yes 83 54.6

Two-stream (temporal) [6] ResNet-152 - Yes 87.2 60

Unsupervised LSTM (temporal) [30] LSTM 300 hrs vids of Sports-1M No 77.7 -

I3D [2] I3D ImageNet+Kinetics Yes 96.7 77.1

TSF [26] I3D ImageNet+Kinetics No 92.3 62.8

Ours ResNet-152 ImageNet No 78.5 51.3

Ours I3D ImageNet+Kinetics No 96 73.4

Two-stream [28] Two-stream ImageNet (spatial) Yes 88 59.4

Two-stream [6] ResNet-152 ImageNet (spatial) Yes 91.8 63.8

St Multiplier [6] ResNet-50,152 ImageNet Yes 94.2 68.9

Unsupervised LSTM [30] LSTM ImageNet No 84.3 -

ActionVLAD [9] VGG16 ImageNet Yes 92.7 66.9

I3D [2] I3D ImageNet+Kinetics Yes 98 80.7

TSF [26] I3D ImageNet+Kinetics No 93.3 63.8

Ours ResNet-152 ImageNet No 89.8 64.2

Ours I3D ImageNet+Kinetics No 97.1 77

Table 4: Comparison with state-of-the-art action recognition models on full UCF101 and HMDB51. The fully fine-tuning:

Yes indicates the backbone is end-to-end fine-tuned on UCF101 and HMDB51, No indicates the backbone is frozen during

the experiments.

set use both.

On RGB data, our ResNet-152 based model performs

10.2% and 18.4% better than the original two-stream model

on UCF101 and HMDB51, respectively. The ResNet-152

based two-stream framework performs slightly better than

our model on UCF101, but ours do 12.2% better than theirs

on HMDB51 even our frame feature extractor is not trained

on the UCF101 and HMDB51 datasets. When switch the

backbone to I3D, our model achieve 95% and 69.8% on

UCF101 and HMDB51 without training the frame feature

extractor, which are 4.9% and 9.8% higher and only 0.6%
and 5% lower than TSF and base I3D, respectively.

When use ResNet-152 as the frame feature extractor,

the performance of our model on optical flow data is just

passable. We believe this is due to the feature extractor is

only trained on ImageNet. As the distribution of optical

flow is different from the RGB images, the extracted fea-

tures can not correctly represent the optical flow images.

This is proved when we use I3D as backbone (pre-training

with optical flow features of Kinetics). Without training the

I3D on UCF101 and HMDB51, our model achieve 96% on

UCF101 and 73.4% on HMDB51.

When we combine predictions from the RGB and flow

models, we obtain 89.8% and 64.2% on UCF101 and

HMDB51 with ResNet-152, respectively. Our results are

2% lower and 0.4% better than the ResNet-152 based two-

stream network on UCF101 and HMDB51, respectively.

The performance of our model is 4.5% and 4.7% lower

compared to the St Multiplier network. However, it is inter-

esting to note that our model outperforms TSF on HMDB51

even we use ResNet-152 instead of I3D as the backbone.

When use I3D as frame feature extractor, the performance

of our model is really closed to the base I3D which are only

0.9 and 2.7 lower than base I3D on UCF101 and HMDB51,

respectively.

Our approach also outperform Temporal Segment Net-

works (TSN) [41] and partially fine-tuned I3D with only

use RGB images on Diving48 dataset, please see details in

the appendix.

7. Conclusion

In this paper, we propose TAVs to recognize human ac-

tions with very few labeled training videos. We analyze

the performances of different initialized TAVs with opti-

mized parameters on with very few training videos. The

best performance is achieved by using the SLDG TAVs (de-

tails are in appendix). We show that the framework which

adopts TAVs can learn discriminative video representation

with very few labeled training samples. The performance is

boost when apply stronger backbones (e.g. I3D). We believe

our approach can be applied to other models to capture the

temporal information of video in other tasks.
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