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Abstract

We propose a framework for the integration of data as-

similation and machine learning methods in human pose

estimation, with the aim of enabling any pose estimation

method to be run in real-time, whilst also increasing consis-

tency and accuracy. Data assimilation and machine learning

are complementary methods: the former allows us to make

use of information about the underlying dynamics of a sys-

tem but lacks the flexibility of a data-based model, which we

can instead obtain with the latter. Our framework presents

a real-time tracking module for any single or multi-person

pose estimation system. Specifically, tracking is performed

by a number of Kalman filters initiated for each new person

appearing in a motion sequence. This permits tracking of

multiple skeletons and reduces the frequency that computa-

tionally expensive pose estimation has to be run, enabling

online pose tracking. The module tracks for N frames while

the pose estimates are calculated for frame N + 1 . This

also results in increased consistency of person identification

and reduced inaccuracies due to missing joint locations and

inversion of left-and right-side joints.

1. Introduction

Mathematical methods for integrating data and dynamical

models have been used for a long time in several applications.

This discipline is most commonly associated with weather

forecasting, where it is referred to as Data Assimilation [3].

We propose that these methods can be leveraged in less

traditional fields, in particular in fast-developing, data-rich

machine learning applications.

Data assimilation methods are designed to be able to inte-

grate data at irregular intervals, from multiple data sources

of varying precision and accuracy. The data is used to adjust

parameters of an underlying dynamical model, to best fit the

data and make reliable predictions about future data points.

Human motion tracking is a new, exciting field to apply these

methods.

In machine learning, we often have scenarios that could

benefit from information about an underlying dynamical

system. This is particularly true in any instance where se-

quential data are treated as separate or individual cases: for

example, whenever data is extracted from a sequence of

images, there is necessarily an underlying time-based dy-

namical system. In addition to this, connected points or

parts are often considered individually and then reassembled

to form a body after they have been identified [5], instead

of taking into account from the start that they are part of a

connected body. We strongly believe that there is a wealth

of very relevant data, that should be leveraged to improve

accuracy, consistency and computation time.

An application where both temporal and kinematic condi-

tions exist is in human motion tracking. The human body has

several kinematic constraints. Firstly, the skeleton creates a

clear joint hierarchy, and each joint has different limits and

degrees of freedom. Secondly, our motion follows certain

patterns (for example, our motion tends to be smooth [28])

that we can leverage to predict how the keypoints of a hu-

man body are moving in time. In fact, there are a number of

sources for additional information we can include to make up

a general ‘model’ of human motion, which can be leveraged

to extract a specific motion sequence from images.

In the proposed module, we have a system where dif-

ferent data sources are trusted to varying degrees, and in-

formation arrives at unknown intervals. This idea can be

applied in combining camera sources, linking disparate data

sources, such as motion sensors and cameras, or in changing

the dependence on different measurements to match chang-

ing confidence. Data assimilation methods are potentially

transformative here due to their decades-long use for fitting

models to data in other fields.

We present an application of the proposed technique, cre-

ating a Kalman filter-based tracking algorithm for human

motion estimation methods. In the literature, these methods

are often interchangeably called pose tracking or pose esti-

mation algorithms. By pose estimation, we mean methods

that will identify poses in images or videos, but where each

image or frame is treated independently. Often methods

of this kind do not have a consistent person identification
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Figure 1. Here, we illustrate three common shortcomings of pose tracking methods. The figure shows images from the middle section of a

motion sequence from the PoseTrack 2018 validation dataset. The top row shows the keypoint annotations given by LightTrack, the middle

row shows this data once it has been filtered by our proposed method, and the bottom row shows the ground truth. We have highlighted first

two quite visible people that are not tracked (yellow), and second an instance where the ankle joints of two skeletons have been swapped

(red). Third, we show a point where a figure in the forefront has lost an easily identified keypoint, despite it being tracked in the previous

frames (light blue). All three issues (and others) are resolved after applying our filters.

throughout a video. Instead, pose tracking includes any

method that attempts to maintain this identification – it is

not just important to identify all poses in a particular frame,

but to be able to track the full sequence of motion of any

particular person throughout a sequence of images.

The main contributions of this paper are the following:

1. We provide a practical example of how Data Assimila-

tion and Machine Learning methods can be combined

and used in a complementary manner.

2. We implement a Kalman filter-based tracking module

that can be applied to any human motion estimation al-

gorithm, decreasing the average run time per frame and

increasing the consistency of joint position estimation.

3. We perform a noise analysis on three motion estima-

tion systems to obtain better measurement and noise

covariance matrices for the filtering module.

4. We implement an identification algorithm to improve

consistency of labelling of skeletons between frames.

2. Related works

The computer vision community has become very suc-

cessful at recovering human pose from single images

[21, 26]. The focus is now moving towards multi-person

pose tracking [22, 31], where a number of people are tracked

consistently over several frames, possibly maintaining the

identification of the same person throughout the sequence.

For a relatively recent review of other methods of human

motion capture, we recommend [30].

As shown in Figure 1, most pose tracking methods suffer

from a number of common limitations: for example, missing

joints or losing them between frames, missing background

people, or those who are partially occluded, and inversion of

keypoints between left and right sides or between different

skeletons.

2.1. 2D Methods

OpenPose is a collection of work (including from [5], [25]

and [29]) that provides 2D human body, hand, foot and face

multi-person pose estimation, as well as 3D joint locations

for single person pose estimation. The method involves

comparing the location of joints with identified part affinity

fields to construct skeletons. Though it can also perform

multi-person motion estimation from video clips, individual

frames are treated separately. Openpose has a beta ‘tracking’

module that relies on optical flow, thus linking the sequence

of images, but this will only track a single person.

A second method, which uses recurrent Spatio-Temporal

Affinity Fields [24] (we will refer to this method as STAF),

builds on the OpenPose algorithm to move towards consis-

tent tracking over a motion sequence, rather than a single

frame. Instead of just using the part affinity fields from Open-

Pose, the STAF algorithm include spatio-temporal affinity

fields.

LightTrack [22] is the top-performing, publicly available

method from the PoseTrack 2018 dataset leader board. The

framework also performs top-down human pose tracking,
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identifying person locations first and then using an inex-

pensive graphical representation of the human skeleton for

pose matching. The authors discuss ID-matching in detail,

including also spatial consistency metrics in their skeleton-

matching module.

AlphaPose [9] is another algorithm that performs regional

multi-person pose estimation. The framework effectively

has two stages: first, a bounding box is constructed for any

region that seems to contain a person, and then in the second

stage the joint locations are identified.

Note that AlphaPose, LightTrack and STAF perform pose

tracking: these methods will already track the same person

over several frames and can do this for multiple people.

2.2. 3D Methods with Spatio­Temporal Information

We also mention the 3D pose estimation and tracking

methods [2, 6, 15, 32], relevant for their inclusion of spatio-

temporal extract 3D poses from 2D images.

In [32] the authors add a geometric constraint induced

loss to identify the correct 3D interpretation of 2D joint

predictions. Similarly, [2] include a temporal error to com-

pensate for errors of the 2D keypoint detector at any partic-

ular frame. However, this method makes use of complete

sequences to make a ‘bundle adjustment’ of all poses iden-

tified for a particular person. In [15] the authors present a

self-supervised method that utilises epipolar geometry to

combine multiple 2D views to recover 3D poses. Chang et

al. [6] use a progressive particle filter to recover a model of

the human body from images, beginning from the torso and

building towards the lower extremities.

In [18], the authors use an LSTM to include temporal

information in their pose tracking method to help main-

tain geometric consistency between frames. Another recent

method [13] goes beyond pose tracking and instead focuses

on motion prediction two seconds or more in the future using

a spatio-temporal tensor of 3D skeleton coordinates.

2.3. Pose Refinement Methods

Finally, methods such as [10, 19] focus instead on pose

refinement. This is conceptually similar to the proposed mod-

ule, in that these methods all take as input only images and

a given pose estimate from any method. Fieraru et al. [10]

propose a post-processing network of this kind, using a pose

refinement method to give refined heatmaps and offsets from

the originally identified keypoints. In [19] the authors also

perform an interesting analysis of the types of errors made by

different pose tracking and estimation methods, and find that

the top-performing methods have similar error distributions.

The pose refinement in this method is therefore fine-tuned to

the error distribution of the original pose estimation method

used.

2.4. Kalman Filters for Motion Tracking

In human motion tracking, Kalman filters are normally

associated with Inertial Measurement Unit (IMU) data fu-

sion [14, 17, 27]. Here the noisy accelerometer, gyroscope

and magnetometer data are fused to give a more accurate

data point at any time instance. However, in camera-based

tracking methods, they can be used to overcome the usual

constraints arising from image sequences. For example, oc-

clusion, self-occlusion and distance from the camera are

all particular hurdles for recovering accurate human pose.

Kalman filters have long been used for object tracking in

images to overcome these issues ([7] presents a summary

of Kalman filter in object tracking as far back as 2005). In

joint tracking, there is often fluctuation in joint location sim-

ply because the true location corresponds to an area (rather

than a point) of the image. Since Kalman filters, in general,

lend themselves to de-noising and include some information

about the underlying structure of a system, we argue that

they can be useful in processing visual joint-tracking data.

An early (2008) application of Kalman filtering to hu-

man motion tracking was to extend tracking over hidden

skeleton segments [12]. In this paper, the authors combine

an extended Kalman filter (EKF) for rigid body pose with

kinematic constraints for a system of connected rigid bodies

(e.g. the ankle complex). In marker-based motion tracking,

the impact soft-tissue artefact on skin-marker data can be

significant when requiring high-precision data. Bonnet et al.

in [4] use multi-body kinematics optimisation and EKFs to

overcome soft-tissue artefact and thus estimate leg kinemat-

ics.

Kalman filters are also useful when combining multiple

images. In [20], the authors combine observations from

multiple cameras to obtain 3D joint positions of a 25-joint

body model. Instead, in [16], views from multiple cameras

are combined to track multiple people in the same envi-

ronment. Multiple cameras are used to avoid inaccuracies

stemming from occlusions when using only a single camera.

The Kalman filters are then crucial in overcoming the data

fusion problem. This is a different application area to the one

in the proposed method, but more similar to how Kalman

Filters are used in IMUs, as the aim is to combine sensor

measurements to generate a weighted fused measurement

directly.

3. Methodology

The proposed tracking module is designed to take steps

toward combining data assimilation and machine learning

methods. Kalman filters are structured to include some in-

formation about the underlying structure of the data, and

leverage this to make predictions for future time steps. With-

out new pose information, new people coming into view will

not be identified. On the other hand, when not tracking, we
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Figure 2. Structure of the proposed tracking module

may lose track of different joints or relabel them between

frames.

In this section, we outline the methodology of the pro-

posed tracking module (Figure 2). The module does not

affect the (underlying) human motion estimation algorithm,

but runs alongside it. From the perspective of the Kalman

filtering, the pose estimation algorithm acts as a sensor pro-

viding regular data points. Thus we treat the tracked pose as

a noisy measurement, obtained from the algorithm every N

frames. When the algorithm is run, we both predict the next

state of each skeleton using the Kalman filters, and correct

these predictions using the pose measurement. The proposed

module also makes use of an Optical Flow algorithm, and

merges predictions made from this data into the predictions

made at every time step.

3.1. Design of New Tracking Module

To implement the new tracking module, there are three

key contributions: first, the design of the system structure

to include all the available information and to allow for flex-

ibility in choice of dataset, Kalman filter and optical flow

algorithm; second, the inclusion of appropriate Kalman fil-

ters; and third, the addition of covariance matrices calculated

using each of three pose estimation methods on the Pose-

Track 2018 dataset [1].

We will make use of different sources of data: we know

that our data follows a time series, and thus successive frames

will give us information about the motion time series (though

this will not be true when the camera view changes). We

need to leverage this for the individual keypoints (joint loca-

tions), rather than the whole body, as the pose can change

between time steps. We can also make some additional as-

sumptions about how the identified keypoints will move in

time, for example by using a constant acceleration or velocity

model (in fact, in [28], [11] the authors suggest that human

motion tends to follow profiles that minimise jerk, the deriva-

tive of acceleration). In terms of kinematic information, the

structure of the skeleton, including joint hierarchy, depends

on the choice of dataset or pose estimation algorithm. How-

ever, this does not affect the inner workings of the module,

other than the requirement of the model to know the number

of joints it needs to track.

We identified three open-source methods to work with

that performed relatively consistently on the PoseTrack 2018

dataset [1], namely OpenPose [5], Spatio-Temporal Affin-

ity Fields (STAF, [24]) and LightTrack [22]. In addition

to these pose estimation functions, we make use of the it-

erative Lucas-Kanade optical flow method implemented in

OpenCV (though this could be substituted with any other

similar method). We also make use of an identification

module (Section 3.5) to compare pose IDs obtained every

time the pose tracking algorithm is run with the IDs already

identified.

3.2. The Kalman Filter

The general time update equations for a discrete Kalman

filter are

x̂−

k+1
= Akx̂k +Bkuk + wk (1)

P−

k+1
= AkPkA

T

k
+Qk (2)

where the superscripts x− and x̂ denote an a priori (as op-

posed to a posteriori) value and an estimated value respec-

tively, Ak is the (n × n) state transition matrix, B is the

(n × l) input matrix, wk is the process noise, Pk+1 is the

(n×n) estimate error covariance, and Qk is the (n×n) pro-

cess covariance matrix. The values n and l correspond to the

state and input dimensions respectively. To these equations,

we add the filter measurement update equations:

Kk = P−

k
HT

k
(HkP

−

k
HT

k
+Rk)

−1 (3)

x̂k = x̂−

k
+K(zk −Hkx̂

−

k
) (4)

Pk = (I−KkHk)P
−

k
(5)

where Kk is the Kalman gain, Hk is the observation model,

Rk is the observation noise (see Section 3.4 and zk is a

measurement subject to (Gaussian) noise.

The Kalman filtering works so that at each timestep, a

prediction of the next state is calculated, as well as the error

covariance ahead. These are Equations (1) and (2). If a new

measurement is received, we perform the correction step,

using equations (3) to (5).

In this instance, we have (noisy) measurements every N

frames from the human pose estimator, and (noisy) measure-

ments every frame from the LK optical flow algorithm. The

state vector x is a vector of M x- and y- joint positions. De-

pending on how we choose to model the motion kinematics,

we can include an input u. The input u can be thought of as

an unfiltered measurement – there is no tracking over time of

this variable, we give an input and this is considered correct

at this time instance but unrelated to other time steps.
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For example, we could design a simple system where

the state x is a measurement of position only, and at each

frame, we input a velocity estimated from the optical flow

as our input u. Alternatively, we could have a state vector

of position and velocity (of the form [ xv ]), with no input

u. This latter model would give a system operating under

a constant velocity assumption (plus noise). The different

models are discussed in more detail in the next section on

System Kinematics.

3.3. System Kinematics

We track the position (in x- and y-pixel positions) and

velocity (using optical flow in the x- and y-directions) of

each joint, so that each filter tracks 2M measurements (since

we are tracking M joint skeletons). To model the system

kinematics, using the matrices Ak and Bk, we assume that

each joint is following a motion path governed by the usual

equations of motion

xt = xt−1 + dt ut−1 +
1

2
dt2at−1 (6)

If we define x = [x0, y0, ...]
T , so that we have a vector of

the x- and y-positions for the M joints, and consider the first

model described earlier with velocity as input, we have a

matrix equation that looks like

x̂−

k+1
= In×nx̂k +∆Tm×muk + wk (7)

where dt is the timestep between frames and ∆Tm×m =
dtIm×m is a matrix of timesteps. Note that the dimensions

of the state vector, n, and the dimensions of the input vector,

m, are not necessarily equal. This depends on how many

values we are measuring. The pixel tracking for the joints

gives us an estimate for joint velocity. Both the position

measurements and pixel tracking processes are subject to

error noise.

In the second case, with both position and velocity form-

ing the state vector [x, u], our equation (dropping dimension

superscripts for clarity) becomes

x̂−

k+1
=

[

I ∆T

0 I

]

x̂k + wk (8)

and our state vector has dimensions [2n× 1].
The equations internal to the Kalman filter define how the

filters perform for the different keypoints. Firstly, we note

in Table 2 that the simple linear model does not capture the

motion well. This is because the equations imply too static

a model to describe motion well, and there is a lag when

motion changes direction.

In general, in human motion analysis, the keypoints at

the wrists and ankles will move more and faster, and change

direction more frequently, than the keypoints on the main

body or head. Here, we see this reflected in the performance

shown for the extremity keypoints in the constant velocity

model relative to the model with velocity as input, and that

with an acceleration component. When velocity is given

as an input, there is no lag when changing direction, but

the measurement is also subject to unfiltered error from the

additional measurement source.

In Table 2, we see that though we are running the track-

ing algorithm every frame, the Kalman filter does introduce

over-filtering in the more simple models. This is particularly

evident in the wrists and ankles, which are the body joints

that tend to move more. Including the acceleration covari-

ance means the model captures most of the movement again

(11% improvement for LightTrack). Including velocity as

input performs better than tracking velocity in the state vec-

tor, particularly for STAF (19% improvement). This is likely

because a constant velocity model does not capture changes

in movement particularly well.

3.4. Noise Matrices

Three sources of error and noise are addressed in any

Kalman filter; the first two can be used to change the be-

haviour of the filter, the third gives us information about the

prediction made by the filter:

1. Measurement Noise: (with covariance R) respectively

for position and velocity, the noise of the joint positions

obtained from the pose estimation algorithm, and the

noise of velocities obtained from the pixel tracking

algorithm (detailed in Section 3.4.1).

2. Process Noise: (with covariance Q) a measure of how

we expect the human motion we are tracking to deviate

from our model – in effect, how much we expect to

deviate from our equations (detailed in Section 3.4.2).

3. Error Covariance: (P) a measure of the estimated accu-

racy of the state estimate, as in Equation (5).

3.4.1 Measurement Noise

To address the measurement noise matrix, we run each pose

estimation algorithm on the PoseTrack 2018 [1] train dataset

to compare how the measurements differ from the ground

truth labels. The poses we obtain for each frame are matched

with the poses given in the ground truth keypoint labels, and

the differences in keypoint measurements are calculated. The

covariance of these differences is used as the measurement

noise matrix. When also considering velocity in the state

vector, we add the covariance similarly calculated from the

values returned by the optical flow algorithm.

3.4.2 Process Noise

If we consider the two systems mentioned in Section 3.3, nei-

ther a constant velocity or constant acceleration assumption

totally describes the motion we might expect from a joint

moving through space. To capture the changing acceleration,
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we can make use of the process noise matrix. If we define

the state vector to be as in the second case (see Equation (8))

so that [ xv ], and our state equation to be:

x̂−

k+1
=

[

I ∆T

0 I

]

x̂k +

[

1

2
∆T 2

∆T

]

âk (9)

where if we let

G =

[

1

2
∆T 2

∆T

]

(10)

we can define the noise term wk ∼ N (0,Q) to have a struc-

ture that takes into account the acceleration of the system,

with

Q =

[

1

4
∆T 4 1

2
∆T 3

1

2
∆T 3 ∆T 2

]

. (11)

In this way, we can leverage the process covariance matrix

to include the acceleration into the system kinematics.

3.5. ID Matching

We initialise a new Kalman filter for each skeleton that

is tracked in the motion clip. This means that the system is

reliant on the consistent identification (or labelling) of the

skeletons. In several pose tracking algorithms, each frame is

considered individually, meaning the skeleton IDs frequently

change between frames. Over the N tracked frames, there

is no issue of changing IDs as the tracking is performed for

each skeleton individually, but when the tracking algorithm

is run, a comparison must be made to ensure the IDs are

consistent as often as possible.

To tackle this issue, we integrate an identification module.

This module works by comparing the number of inlier /

outlier joints (within a tolerance) of a skeleton relative to

the skeletons in the previous frame. Any joints that are

within this threshold contribute to a score for the skeleton

pair. There is also a score bonus if the two poses have similar

scales and are close to each other. In the case of a mismatch,

the IDs are reassigned in the way that maximises the total

score. A new ID is assigned to any new skeletons, though

as far as possible we aim to maintain the IDs of established

Kalman filters. Specifically, as far as possible, we avoid

defining new pose IDs, unless a new pose is very far from

any previously recognised skeleton.1

4. Experiments and Results

4.1. The Datasets

To test the new tracking module, we require datasets

with ground truth joint annotations in real-world images in

a range of lighting conditions, with a variety of different

situations. We particularly wanted to test the algorithm in

sequences with several people, as this is the only way to

1Note that though this was a necessary addition, it was not the main

focus of this work.

Model
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA

Head Shou Elb Wri Hip Knee Ankl Total

Acceleration Model – Our ID matching

STAF 35.5 59.4 53.7 39.8 57.3 43.1 46.6 47.8

LT 63.2 64.7 63.4 57.3 54.6 57.9 59.1 60.0

GT 86.8 89.3 80.8 88.6 88.5 85.1 82.8 84.7

Acceleration Model – Model’s own ID matching / Ground Truth IDs

STAF 32.2 55.6 50.3 36.6 54.4 40.9 42.8 44.6

LT 61.3 64.5 62.5 58.2 54.4 57.2 59.6 59.7

GT 92.7 93.3 94.0 93.7 94.0 94.0 93.5 93.5

Table 1. PoseTrack 2018 MOT metrics (tracking 0 frames) to show

performance of our ID matching method. First, we compare our

ID matching method to the methods used by the original models,

and show that performance is comparable. Second, we compare

performance when using ground truth keypoint annotations with

our ID matching compared to with the ground truth person IDs.

OpenPose does not have its own ID matching. (LT = LightTrack,

STAF = Spatio-Temporal Affinity Fields, GT = Ground Truth)

test the identification module, and where treating frames

individually might normally lead to joint positions being

inconsistently tracked over several frames. To the best of

our knowledge, there are very few annotated human motion

datasets, but Posetrack 2017 and Posetrack 2018 [1] fulfilled

these requirements. In addition, [8] provide some annotated

video sequences taken with a mobile phone.

4.2. Benchmarking

We use the multi-person multi-frame benchmark for Pose-

track 2018. The evaluation is based on a number of param-

eters, namely 1) The correct identification of the number

of people in the scene, 2) The consistent identification of

different people in the scene, and 3) The identification of

joint locations for all 25 joints for each person, compared

with the ground truth labels of the images.

We consider two benchmarks given for the PoseTrack

dataset, both of which are given by the ‘poseval’ evaluation

module: The first is the Average Precision (AP) metric for

per-frame multi-person pose estimation. The measure is pro-

posed in [23] and evaluates the precision of joint detections

in each frame. The pose detections are greedily assigned to

the ground truth (GT) annotations, and duplicate or unas-

signed poses are counted as false positives. The metric is

given for each body part and as a total over the skeleton.

The second is a Multiple Object Tracking (MOT) metric

for the evaluation of pose tracking over several frames or

a video sequence. This considers predicted poses and their

tracking IDs and evaluates the distances between predicted

and GT joint locations both on a global basis (i.e. not consid-

ering tracking IDs), and taking the tracking IDs into account.

Multiple Object Tracker Accuracy (MOTA), Multiple Object

Tracker Precision (MOTP), Precision, and Recall metrics

are computed across all joints, and MOTA is given for each
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Model
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTP Prec Rec AP AP AP AP AP AP AP AP

Head Shou Elb Wri Hip Knee Ankl Total Total Total Total Head Shou Elb Wri Hip Knee Ankl Total

Original Algorithm

OpenPose -77.9 6.2 -26.4 -53.8 -10.1 -34.3 -62.3 -39.7 59.5 50.8 66.0 23.4 71.2 58.1 45.9 57.2 54.1 45.3 48.9

STAF 39.5 67.7 54.4 44.4 55.9 50.0 42.3 49.8 60.3 76.0 67.8 44.6 75.2 68.9 57.6 65.9 63.1 56.4 60.5

LightTrack 67.7 72.6 67.3 57.8 63.5 63.8 57.7 64.6 85.3 88.0 76.0 75.1 80.1 75.1 66.4 71.5 71.2 66.1 72.4

Simple Linear Model

OpenPose -7.0 -8.9 -9.8 -8.9 -9.2 -9.0 -8.5 -8.7 56.2 44.0 36.9 15.4 24.4 18.9 13.0 19.4 16.6 13.5 17.2

STAF 28.2 50.7 37.3 27.2 37.8 33.0 27.0 34.0 56.3 62.3 50.3 33.0 56.4 49.8 39.5 47.2 44.9 39.6 43.6

LightTrack 57.3 59.6 50.2 51.9 52.5 52.1 55.6 54.2 57.3 68.2 65.3 63.2 65.8 61.0 58.9 59.7 60.1 58.3 61.0

Velocity Input Model

OpenPose 16.3 21.8 11.3 8.1 25.2 13.3 7.3 14.7 57.1 60.6 58.1 34.6 74.1 54.3 36.2 65.7 46.1 38.0 48.8

STAF 33.7 57.2 55.9 35.8 61.3 40.1 43.6 46.8 62.5 71.3 63.2 43.5 69.1 63.8 45.2 57.6 53.2 44.1 53.8

LightTrack 62.6 63.4 58.3 52.8 54.3 53.1 54.8 57.0 63.2 69.2 72.4 66.7 69.3 67.2 61.5 65.9 66.8 60.3 65.4

Constant Velocity Model

OpenPose 14.6 16.3 7.3 3.5 16.2 15.3 1.0 10.6 46.3 58.5 55.3 30.7 64.9 43.6 27.7 57.2 38.5 30.9 41.2

STAF 30.1 53.2 44.0 29.3 57.9 33.7 27.4 39.4 57.5 70.1 63.7 37.6 60.2 52.7 33.1 52.2 40.3 38.4 44.9

LightTrack 59.2 62.1 53.8 54.3 55.7 53.2 57.4 56.5 62.6 68.4 73.8 65.3 69.7 65.4 59.8 67.6 64.7 59.1 64.5

Acceleration Model

OpenPose 24.1 21.2 19.4 13.7 28.0 23.2 17.4 21.0 66.3 52.5 65.9 30.7 63.8 44.0 29.1 57.4 38.1 29.2 41.0

STAF 35.5 59.4 53.7 39.8 57.3 43.1 46.6 47.8 62.5 73.3 67.1 44.7 67.3 59.8 47.9 53.1 49.3 46.9 52.7

LightTrack 63.2 64.7 63.4 57.3 54.6 57.9 59.1 60.0 72.3 73.4 78.2 70.2 76.8 69.4 60.7 68.7 68.1 60.5 67.8

Particle Filter

OpenPose 17.2 25.3 10.5 7.5 23.4 15.7 6.2 15.1 56.5 62.0 57.3 19.8 31.8 26.9 19.8 26.5 24.0 20.4 23.9

STAF 36.8 64.3 50.3 39.2 52.0 46.3 40.1 46.3 60.2 76.4 65.3 42.9 72.9 66.3 54.3 63.3 60.7 54.5 58.2

LightTrack 33.3 36.5 32.1 26.5 31.5 30.5 27.5 31.3 70.4 86.3 41.9 40.0 43.5 39.4 34.6 38.8 37.6 34.7 38.5

Table 2. PoseTrack 2018 MOT and AP metrics (tracking 0 frames) for four different Kalman filter models, compared to the performance of

the original algorithms. We notice some over-filtering, particularly in the wrists and ankles, but also significant improvements in OpenPose,

which is not designed to track poses over several frames. The measurements are better in the velocity input and acceleration models.

body joint class as well.

4.3. Results

We compare the methods OpenPose [5], LightTrack [22]

and STAF [24]. Note that LightTrack is currently the best

performing publicly available system on the PoseTrack 2018

leaderboard. For each of the methods, we test four Kalman

filters that describe different kinematic models:

1. Simple Linear Model: State vector contains position

only [x], no input.

2. Velocity Input Model: State vector contains position

only [x], velocity [v] as input.

3. Constant Velocity Model: State vector contains position

and velocity [x, v], no input.

4. Acceleration Model: State vector contains position and

velocity [x, v], no input, process covariance matrix Q

has the form of Equation (11).

We also test how the filters perform as we increase the num-

ber of frames N over which we track the poses. For each of

these, we report both AP and MOT metrics, noting however

that the Kalman filters will provide a benefit primarily in the

MOT metric.

4.3.1 Original Algorithm Results

In Table 2 we report the results for the benchmarks men-

tioned above for the three chosen pose estimation methods

on the PoseTrack 2018 validation dataset. OpenPose per-

forms relatively well on single frame pose estimation, but

in our experience suffers in the tracking metrics because the

tracking ID assigned to each pose is not consistent frame to

frame. We note that with AlphaPose we had difficulties in

replicating the results reported by the authors, and thus have

included these results in the supplementary material.

4.3.2 Length of Tracking Sequence

We also investigate how the value of N , the number of

frames tracked, affects the performance of the model. In

Figure 3, we see MOTA total scores and computation speed

when all three methods are run alone, and when they are run

with tracking over N = [0, 2, 5, 10] frames. For the tracking

here we use the Acceleration model, as this performed best

overall for both AP and MOTA metrics. The complete results

are shown in the Supplementary Material.

We can see that all three methods reach real-time tracking

speed (30 FPS), at N = 2, 5 and 10 for OpenPose, STAF
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Figure 3. MOTA Totals and computational speed (FPS) with N =
[0, 2, 5, 10] for each method. The diamond markers show where

each method achieves a real-time speed of 30FPS or higher. The

horizontal lines show performance for the original methods (we

have excluded the original MOTA performance of OpenPose as it

is a pose estimation method).

and LightTrack respectively. For all three methods, there is a

slight loss in MOTA performance with increasing N (8% and

14.5% for STAF and LightTrack respectively). This means

that our module allows the use of some of these powerful

pose tracking methods in real time, without sacrificing too

much accuracy. We also transform a pose estimation method,

OpenPose, into a pose tracking method.

For pose estimation methods that frequently change track-

ing ID of the different skeletons, or that see joints frequently

disappear from the image, the primary benefit of any track-

ing is the added consistency. However, the filter is also not

able to capture all of the intricacies of motion when tracking

over a large number of frames.

5. Discussion

Kalman filters are powerful tools for dealing with mea-

surement uncertainties and data inconsistencies. Here, we

have presented a system that is to an extent reliant on the

data points obtained from the pose tracking algorithm, but

manages to perform close to the original algorithm, despite

not running any pose inference on the N − 1 tracked images.

The system includes equations of motion to make sense of

the measurements obtained and because of the filtering, finds

a balance between ‘trusting’ the data from the algorithm (i.e.

the best possible measurement we can obtain), and maintain-

ing the consistency that the filtering methods provide.

To an extent, the balance between these differs depending

on the number of frames, N , that we track between measure-

ments, the original pose estimation method, and the system

kinematics we have tried to describe with the Kalman filter

equations. All the existing methods tried were sped up to

over 30 FPS, which is an acceptable speed for real-time pose

tracking.

6. Conclusions

We present a module that leverages both Data Assimila-

tion and Machine Learning methods for human motion track-

ing. We can transform methods that perform pose estimation

to pose tracking methods, or speed up existing pose tracking

methods to real-time speeds. The different Kalman filters

show how simple but considered changes to the internal

structure of the system can tweak performance in different

ways. In addition, these filters are computationally inex-

pensive, and can easily be run alongside a more expensive

network to increase the speed at which a motion sequence

can be analysed.

Data Assimilation and Machine Learning methods are

often similar enough in structure to complement each other.

The method proposed here does not rely on any particularity

of human motion estimation to be successful; thus, there is

no reason why it could not be applied to other areas. Several

of the inaccuracies we encounter in human motion tracking

are actually common in computer vision applications and are

simply due to inconsistencies in the interpretation of images.

Data Assimilation is a field founded on resolving and work-

ing with inconsistencies and uncertainties in datasets and

therefore is an area that can make a valuable contribution to

the computer vision field.

In future works, it would be worth considering how a

neural network based model can be incorporated into an

Extended Kalman Filter. In this work, we have used our

filters to complement the pose estimation methods, but a

more fundamental integration would bring to light how a

neural network compares to historical methods. Of partic-

ular interest is whether a data-based approach can capture

nonlinearities better than existing methods.

Another avenue to consider would be to use the Kalman

filters presented in this method as an ensemble, to leverage

the strengths of the different models. In particular, moving

weights depending on the velocity of the keypoints would

allow more or less stable models to be used to accurately

describe the motion.
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