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Abstract

In this paper, we present an end-to-end future-prediction

model that focuses on pedestrian safety. Specifically, our

model uses previous video frames, recorded from the per-

spective of the vehicle, to predict if a pedestrian will cross in

front of the vehicle. The long term goal of this work is to de-

sign a fully autonomous system that acts and reacts as a de-

fensive human driver would — predicting future events and

reacting to mitigate risk. We focus on pedestrian-vehicle in-

teractions because of the high risk of harm to the pedestrian

if their actions are miss-predicted. Our end-to-end model

consists of two stages: the first stage is an encoder/decoder

network that learns to predict future video frames. The sec-

ond stage is a deep spatio-temporal network that utilizes the

predicted frames of the first stage to predict the pedestrian’s

future action. Our system achieves state-of-the-art accu-

racy on the Joint Attention for Autonomous Driving (JAAD)

dataset on both future frames prediction, with a pixel-wise

prediction l1 error of 1.12, and pedestrian behavior predic-

tion with an average precision of 86.7.

1. Introduction

For the last decade, researchers and companies alike

have been striving to achieve Level 5 autonomy for self-

driving vehicles (i.e., autonomous operation with no human

intervention) [3]. One benefit of widespread Level 5 auton-

omy would be a reduction in vehicular accidents caused by

human error, which kills around 1.35 million people a year

[1]. The feasibility of Level 5 has been buoyed by research

overcoming several milestones, such as autonomous driv-

ing on highways [9], rough terrains [36], and urban envi-

ronments [39]. These breakthroughs have led several com-

panies to invest in consumer-grade autonomous vehicles.

Nonetheless, there are still many hurdles left to over-

come before Level 5 autonomy is reached. One issue is
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Figure 1. Will the pedestrian step in the vehicle’s path? Human

drivers and pedestrians interact through nonverbal, physical com-

munication. For example, a pedestrian might make eye contact

with a driver. From this communication, the driver and pedes-

trians predict each other’s actions. The driver may anticipate the

pedestrian will attempt to cross the road, and slow down to fa-

cilitate. Fully autonomous vehicles are expected to identify the

signals pedestrians exude, predict potential actions, and react ap-

propriately. This work presents a pedestrian prediction model that

embodies these principles.

that these vehicles are not replicating the behavior of hu-

man drivers — specifically, the ways human drivers com-

municate with each other, and surrounding agents [25, 33].

For example, pedestrians use nonverbal cues such as eye

gaze or hand gestures to communicate their crossing intent

to human drivers. Conversely, in autonomous vehicles, any

misunderstanding of pedestrians gestures or misprediction

of their intents will more likely cause traffic accidents. In

Figure 1, we present an uncertain situation where a pedes-

trian may or may not cross in front of the vehicle. Incor-

rectly predicting that the pedestrian will not cross would

likely lead to pedestrian injury.

This work focuses on the understanding and anticipation

of pedestrian action as a step toward an autonomous vehicle

capable of understanding such nonverbal communication.

To this end, we employ the Joint Attention for Autonomous

Driving (JAAD) dataset [26], which is specifically designed

to capture the visual and behavioral complexity between
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pedestrians and drivers from the perspective of the driver.

JAAD consists of a multitude of complexities and condi-

tions (e.g., weather, location, etc.,) that allow us to thor-

oughly test the robustness of our model.

The model itself operates in two stages: first, the net-

work takes N video frames (the past) and predicts the

next N video frames (the future). Specifically, the input

frames are encoded into features using spatio-temporal 3D-

Convolution layers. The features are then decoded into pre-

dictions of the next future frames using depth-wise separa-

ble convolutional LSTM layers. The second stage of the

model utilizes the predicted N future frames to classify if

the pedestrian will step in front of the vehicle. This stage

processes the predicted frames with a supervised action net-

work to predict pedestrians crossing actions. The full model

is trained in an end-to-end fashion to minimize loss on both

future frames prediction and pedestrian crossing prediction.

Our model is able to achieve state-of-the-art accuracy on

both future frames prediction and pedestrian future action

prediction. An ablation study of the model’s components

shows our model is capable of capturing the key aspects

of both egocentric and external movement required for ac-

curate pedestrian prediction. The robustness of the future

frames prediction component allows the action classifica-

tion component to achieve state-of-the-art accurately, fur-

ther indicating the predicted frames have the level of detail

required to make such predictions.

In the future, these models may prove useful to the

understanding and prediction of other environmental vari-

ables, such as predicting the behavior of other vehicles. The

model may also be useful for predicting pedestrian intent,

rather than action, something that can be inferred from ad-

ditional labels provided by the JAAD dataset. For now, we

focus on anticipating one of the most dangerous circum-

stances: a pedestrian stepping in front of a vehicle.

In summary, this paper makes the following contribu-

tions:

• We present a future video frames prediction en-

coder/decoder network that operates in a self-

supervised manner to predict N future frames of a

video using N initial frames.

• We propose an end-to-end model that predicts the fu-

ture video frames and uses the predicted frames as in-

put for supervised action recognition network to pre-

dict when pedestrians will step in front of the vehicle.

• We achieve state-of-the-art performance on both fu-

ture frames prediction and predicting pedestrian future

crossing action on JAAD dataset.

• We conduct a thorough ablation study that shows the

model components are robust, efficient, and effective

across a multitude of weather conditions, locations,

and other variables.

2. Related Work

Our work is related to two avenues of previous work:

future video frames prediction and pedestrian future action

prediction.

Future Video Frames Prediction: In recent years, Re-

current Neural Networks (RNN) have been widely used in

future video frames prediction [32, 42]. Much of this work

focuses on predicting one frame into the future, with an op-

tion to modify the network for long range prediction by tak-

ing in the predicted frame as input. Some examples of this

include [13, 24, 32, 34, 42]. Our work differentiates itself

by focusing on an architecture explicitly designed to predict

many frames into the future.

Other studies have applied stochastic variational meth-

ods to future frames prediction, such as [2] and [6]. Several

others have worked with generative adversarial networks

[7, 22, 23, 27, 38, 41] generated video frames, treating it

as a major characteristic to distinguish between real and

fake video frames. However, models from these techniques

are often unstable and difficult to properly evaluate. We fo-

cus the training and evaluation of our model on traditional

dataset-driven performance, which allows us to accurately

understand the applications and limitations of our results.

Recently, Gujjar et al. [14] studied the prediction of ur-

ban pedestrian actions by predicting future frames of traf-

fic scene videos. Of these related works, this study’s ap-

proach is the most similar to ours. The key difference is

that our network provides better spatio-temporal represen-

tations for next frames prediction. This distinction is due

to our network’s deeper nature and the use of residual con-

nections, which enable it to extract more complex features

without falling into vanishing gradient problem. Our net-

work also has a reduced running time and improved per-

formance, thanks to the use of depth-wise separable convL-

STMs rather than standard convLSTMs (see Section 4.1.3).

Furthermore, our network uses lateral connections to reduce

the blur in future frames, something especially important

for long term prediction.

Pedestrian Future Action Prediction: In this work,

we are mainly concerned with modeling pedestrian future

action in the context of autonomous driving cars. Many

existing approaches are based on Hidden Markov Model

(HMM) where the pedestrian’s intent is represented in the

hidden state [19, 44]. These approaches have been ex-

tended to combining the motion models of all the intentions

together into a single Mixed Observability Markov Deci-

sion Process (MOMDP), which is a structured variant of the

more common Partially Observable Markov Decision Pro-

cess (POMDP) [4]. Although models utilizing the Marko-

vian process are known for their fast adaptability, their as-
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sumption can be restrictive due to insufficient prior condi-

tioning. Thus, the main limitation of the presented methods

is their lack of memory. Our approach overcomes this limi-

tation by using RNN, known for its good memory retention

qualities, in our model, thus extending its long-term mem-

ory.

Other approaches for prediction of time series assume

they are samples from a process generated by a linear pro-

cess driven by a white, zero-mean, Gaussian input [18, 29].

Although they can be more accurate, Gaussian processes

have shown to be slower than Markov models since they use

the entire observed trajectory to predict the future state [12].

Switching linear dynamical models, applied in constrained

environments, were introduced as extensions to these mod-

els [18, 20]. Kooij et al. proposes a Dynamic Bayesian Net-

work for pedestrian path prediction which incorporates en-

vironment parameters such as pedestrian situational aware-

ness and head orientation with a Switching Linear Dynam-

ical System to predict changes in the dynamics of pedes-

trians [20]. These motion models require accurate and pre-

cise segmentation and tracking of pedestrians to be efficient.

Such assumption can be challenging due to the difficulty

of extracting reliable image features for segmentation and

tracking [40].

Consequently, many approaches, including ours, study

pedestrian activity models that are extracted directly from

the image space of the captured scenes. Hasan et al. [15]

treat the prediction of adverse pedestrian actions as an

anomaly detection problem. They built a fully convolu-

tional autoencoder to learn the local features followed by

a classifier to capture the regularities. Rasouli et al. [26]

extract context features extracted from input frames using

AlexNet [21] and train a linear SVM model to predict fu-

ture crossing action of pedestrians on JAAD dataset. These

approaches are limited because they focus only on spatial

appearances, ignoring the temporal coherence in long-term

motions. To solve this issue, Gujjar et al. [14] processes

the crossing actions classification by feeding the predicted

frames of their future frame prediction network to a C3D

based network [37] which takes into account the temporal

dynamics in addition to the spatial appearances. As men-

tioned before, this work is similar to ours, but varies in the

training strategy employed, the experimental study of net-

work components, and our network’s higher performance

with shorter running time (see Section 4.1).

3. Methods

Here, we detail the end-to-end model (Section 3.1) and

enumerate experimental details (Section 3.2), including an

overview of the dataset (Section 3.2.1) and model search

procedure (Section 3.2.2).

3.1. Architecture

Our end-to-end model consisted of two stages: the first

stage was a self-supervised encoder/decoder network that

generated predicted future video frames. The second stage

was a deep spatio-temporal action recognition network that

utilized the generated video frames to predict pedestrian ac-

tion — specifically, if the pedestrian would cross in front of

the vehicle.

3.1.1 Future Frames Prediction Component

The future frames prediction component of the model

was a self-supervised encoder/decoder that predicted fu-

ture frames in a video sequence. N consecutive video

frames were input into the model, and the model predicted

N frames into the future. Figure 2A is a visual rep-

resentation of the encoder/decoder architecture. The en-

coder mapped the input sequence of frames into a low-

dimensional feature space with different resolutions. The

decoder mapped the low-dimensional representation space

of the input frames to an output image space. We de-

fine the input as a sequence x = {x1, . . . , xN} where xi

refers to the frame of index i in the input. The encoder

yielded dense representations z = {z1, ..., zN} from the in-

put. The decoder then output the following frames, denoted

as y′ = {y′N+1, . . . , y
′

2N}, as a prediction of the ground-

truth frames y = {yN+1, . . . , y2N}.

Next, we will detail the precise structure of the encoder

and decoder.

Encoder: The encoder was a spatio-temporal neural net-

work composed of three-dimensional convolutional layers.

3D convolutions modeled both the spatial and sequential

relationships of temporal connections across frames. N

RGB frames were the encoder input. The size of input is

3 × N × H × W . The temporal duration of the outputted

feature maps matched the input images.

The main components of the encoder were Block-1,

Block-2 and 3D convolutions (conv3d) layers (as shown

in Figure 2). Each convolutional operation was followed

by batch normalization [17] and a Leaky-ReLU activa-

tion function. The residual blocks (Block-1 and Block-2

in Figure 2B) consisted of two 3D convolutions with no

stride. Residual connections addition operations were iden-

tity shortcuts for Block-2 and 1× 1× 1 3D convolution op-

erations matched the input and output dimensions in Block-

1. Inputs were downsampled in conv3d1, conv3d2, and

conv3d3 with a stride of 2. The filters of the last Block-2

of our encoder were time-dilated filters which captured the

temporal dependency with various resolutions for the input

sequences.

Decoder: The decoder was composed of convLSTMs

layers interspersed with up-sampling layers. The main com-

ponents of the decoder architecture are Block-3 and Block-4

2299



Figure 2. A- Overview of the proposed encoder/decoder network used in our approach to predict the next N video frames (the future) using

the first N video frames (the past) as input. B- The 4 different residual blocks used in the architecture in A. (a) and (b) are the residual

blocks used in the encoder. (c) and (d) are used in the decoder.

shown in Figure 2B. The blocks were composed of two con-

secutive depth-wise separable convLSTMs with a residual

connection connecting the input to the output. The residual

connection in Block-4 was a simple identity shortcut, while

Block-3 was 1× 1× 1 3D convolution operations matching

the input and output dimensions. For the up-sampling lay-

ers, we used deconvolution [11] because it uses learnable

parameters rather than predefined up-sampling.

Encoder/Decoder Connections: Lateral skip connec-

tions crossed from same-sized parts in the encoder to the de-

coder (the green lines shown in Figure 2). The lateral con-

nections increased the level of detail from the input frames

available, facilitating detail in the predicted frames.

3.1.2 Pedestrian Action Prediction Component

The second stage of the model consisted of a fine-tuned

early action recognition network, the ’Temporal 3D Con-

vNets’ (T3D) [8]. This stage predicted if the pedestrians

would cross the street in the scene. N predicted frames,

generated from the encoder/decoder, were input into the

network. The last classification layer of the T3D network

was replaced with a fully connected layer, which produced

a single output followed by sigmoidal activation. The com-

ponent was trained with binary-cross entropy loss.

3.1.3 End-to-end Loss

The model had two main tasks that could be used for train-

ing: the future frames prediction loss and the pedestrian

crossing loss. The full model was trained end-to-end with a

multi-task learning objective:

Lrecog = λLpred + Lce(Y, Ŷ ), (1)

where Lce was the cross-entropy loss for crossing action

classification, Ŷ and Y were high-level predictions and cor-

responding ground truth classes. The weight factor of the

loss was λ. Lpred was the future frame prediction loss,

the pixel-wise loss between the pixels of the N predicted

frames and the N ground-truth frames, defined as:

Lpred =
1

P
(

2N∑

t=N+1

P∑

i=1

(yt,i−y′t,i)
2+

2N∑

t=N+1

P∑

i=1

|yt,i−y′t,i|)

(2)

where P = H × W , the number of pixels per frame. We

use a combination of l1 and l2 norm losses for regularization

purposes.

3.2. Experiments

In this subsection, we describe the dataset that was used

to evaluate our model (Section 3.2.1), the model selection
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search details (Section 3.2.2), and the experimental details

of our experiments (Section 3.2.3).

3.2.1 Dataset

The Joint Attention for Autonomous Driving (JAAD)

dataset was used for training and evaluation across all ex-

periments [26]. JAAD was designed to study the behavior

of traffic participants, with a focus on pedestrian and driver

behavior. Approximately 240 hours of driving videos were

collected in several locations using two vehicles equipped

with wide-angle video cameras. Cameras were mounted in

the center of the cars’ windshields, below the rear view mir-

ror. The dataset consists of 346 high-resolution video clips

that focus on pedestrian and driver behaviors at the point of

crossing. Most of the data was collected in urban areas, but

some clips were filmed in rural areas.

We picked JAAD because it contained a variety of both

complex interactions and situations that may impact the

behavior of the traffic participants. Interactions included

pedestrians crossing in groups or individually, partially oc-

cluded pedestrians, and pedestrians walking parallel to the

street. Situations included interactions with other drivers

in parking lots or uncontrolled intersections. A variety of

difficult conditions are represented in the dataset, such as

weather, light conditions, and day/night conditions.

3.2.2 Model Search

We conducted a large-scale model search to identify the

best performing encoder/decoder model for our future video

frames prediction component. The search involved three

steps, which are further detailed below. First, we selected

a potential architecture design. Second, we trained 38 vari-

ations of the architecture with random sets of hyperparam-

eters. Finally, the best architecture/hyperparameters com-

bination was identified by lowest error on average future

frames prediction, across N frames.

The architecture and hyperparameters presented in Fig-

ure 2 represent the combination with the highest perfor-

mance.

Architecture Design: The main encoder/decoder com-

ponents were experimentally manipulated in order to test

multiple architectural designs. The number of layers, the

order of the layers, and the number of channels within lay-

ers were all varied. Across all variations, the encoder output

remained unchanged because the spatial dimension of the

input was consistently downsampled by 8. In the decoder,

the convLSTM block(s)-deconvolution pattern was consis-

tently used.

Hyperparameters Selection: For each selected archi-

tecture, 38 hyperparameter settings were randomly sam-

pled. Each parameter setting was evaluated using its aver-

age pixel-wise prediction l1 error on the validation set. De-

Calibration parameters search space

Spatial filter size of 3D Convs [3,5,7,11]

Temporal dilation rate [1,2,3,4]

Spatial filter size of sep-ConvLSTMs [3,5,7]

Temporal filter size of 3D Convs [2,3,4]

Temporal filter size of sep-ConvLSTMs [2,3,4]

Table 1. encoder/decoder network hyperparameters and search

space. Note: temporal dilation rate is implemented only in the

last Block of the encoder.

tails of the hyperparameter search spaces are summarized

in Table 1.

3.2.3 Experimental Setup

We used the same training, validation, and test clips pre-

sented in [14], which allowed us to directly compare our

performance. 60% of the data was set aside for training,

10% for validation and 30% for testing. Clips were di-

vided into 2N -frame videos with a temporal stride of 1. The

frames were resized to 128× 208, with N = 16. Thus, the

model input was 3× 16× 128× 208.

The future frames prediction component was pre-trained

on JAAD dataset and the T3D network was pre-trained on

UCF101 dataset [31]. The model was fine-tuned on the end-

to-end loss, as detailed in Section 3.1.3, with the Adagrad

[10] optimizer. The weight factor λ was set to 0.5. The end-

to-end model was fine-tuned for 30 epochs with a learning

rate of 10−4. Our end-to-end model was fine-tuned with

the same JAAD splits described in [14, 26] for comparison.

The test set is composed of 1257 16-frames videos of which

474 are labelled as crossing and 783 as not crossing.

All experiments were run on an Ubuntu server with a

TITAN X GPU with 12 GB of memory.

4. Results

We evaluated our model on two predictive tasks: fu-

ture frames and future pedestrian crossing. In this section,

we present a complete description of our experiments and

subsequent results. In summary, our model outperformed

state-of-the-art models in predicting future pedestrian cross-

ing action on JAAD dataset, yielding an Average Precision

(AP ) of 86.7, an improvement over the previous state-of-

the-art performance of 81.14AP [14]. The source code and

trained models will be made available to the public.

4.1. Future Frames Prediction

Future Frames Prediction is the problem of accurately

generating future frames given a set of consecutive previ-

ous frames. We quantitatively compared our model’s per-

formance on future frames prediction against other state-

of-the-art methods (Section 4.1.1), detailed consistent ar-
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Model l1 loss (×10−1)

Res-EnDec [14] 1.37± 0.37
PredRNN++ [42] 1.61± 0.35
PredNet [24] 1.30± 0.41
Ours 1.12 ± 0.32

Table 2. Comparison of our model with state-of-the-art methods on

JAAD dataset. We report pixel-wise prediction l1 error averaged

over the 16 predicted frames.

chitectural trends that we identified from our model search

(Section 4.1.2), conducted an Ablation Study (Section

4.1.3), and performed a qualitative analysis on our model

(Section 4.1.4).

4.1.1 Quantitative Analysis

Most state-of-the-art methods for future frame prediction

have published results on datasets that have static cam-

eras and identical backgrounds, such as the Moving MNIST

dataset [32] and the KTH action dataset [30]. In this work,

we evaluated and compared our model to state-of-the-art

models on the JAAD dataset, which consists of complex,

real-world interactions and variability that we can expect

autonomous vehicles to encounter regularly (we detail the

complexities of the dataset in Section 3.2.1). We limited our

quantitative comparison to state-of-the-art methods which

have publicly available code, including PredRNN++ [42]

and PredNet [24], and Res-EnDec [14], who trained and

tested on the same data split we used (see Section 3.2.3).

PredRNN++ and PredNet were originally designed to

predict one frame ahead, but they were modified to pre-

dict multiple future frames by treating their predicted

frame as input and recursively iterating. We trained

both models from scratch on JAAD dataset on the same

train/validation/test described in our methods.

Res-EnDec [14] is, to the best of our knowledge, the best

performing model with published results on JAAD dataset.

The code for this model was not released, so we directly

compared our results to the results reported in [14].

In Table 2, we present the average performance of each

model on the future frame prediction task across 16 time

steps. Our model has the lowest error among the models we

tested.

In Figure 3, we plotted the l1 loss of each model between

the predicted and the ground truth frames across multiple

time steps, up to 16 frames into the future. This allowed

us to evaluate each model’s relative consistency across the

predicted frames. The quality of the predicted frames de-

graded over time for all models. Res-EnDec model had a

slight variation in this trend; the error was higher for time

step 1, explained in [14] as a result caused by the reverse

ordering of their inputs.

Our model outperformed the state-of-the-art methods for

all time steps except the initial time step, where PredNet

produced slightly better performance. PredRNN++ and

PredNet produced reasonably accurate short term predic-

tions, however, they broke down when extrapolating further

into the future. Compared with our model and [14], their

errors increased considerably over time. This is expected,

since both PredRNN++ and PredNet are not explicitly de-

signed and optimized to predict multiple future frames. The

predicted frames unavoidably had different statistics than

the natural images the models were optimized for [5]. Given

that, it is unsurprising that our model and [14] have better

performance for long term predictions.

Figure 3. Comparison of our model with state-of-the-art models

on JAAD dataset. We report frame-wise l1 loss of generated se-

quences on the JAAD test set. All models are trained from scratch

on JAAD training set.

4.1.2 Architectural Trends Identified from Model

Search

The performance of our selected future frames prediction

component, shown in Figure 3, resulted from the model

selection criteria explained in Section 3.2.2. Through the

model search process, we discovered several interesting and

consistent architectural trends and their relationship to next

frame prediction performance and speed. We report these

trends here, so they can inform future model searches re-

lated to this topic.

We found that kernels with decreasing sizes in the spa-

tial dimension (11 × 11 −→ 7 × 7 −→ 5 × 5 −→ 3 × 3) and

constant size in the time dimension exhibited higher per-

formance across temporal variations, while still capturing

the details from the scene. We also noted that ascendant

dilation rates in the temporal dimensions at the end of the

encoder network (1 −→ 2 −→ 4) performed best, and enabled

our encoder network to have larger temporal receptive field

without the need to add more layers.
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Model l1 loss (×10−1) SSIM Time (ms)

Ours 1.12± 0.32 0.924 88.74
V-1 (Reg-convLSTM) 1.13± 0.39 0.920 100.36
V-2 (Spatial-convLSTM) 1.11± 0.31 0.929 109.84
V-3 (Depth-convLSTM) 1.16± 0.35 0.911 80.69
V-4 (w/o laterals) 1.26± 0.37 0.883 86.69
V-5 (w/o residuals) 1.23± 0.34 0.894 85.31
V-6 (Undilated) 1.20± 0.29 0.905 87.43
V-7 (w/o Deconv) 1.18± 0.43 0.909 87.25

Table 3. Ablation study of different model variants on the JAAD

dataset. We report the average pixel-wise prediction l1 error, the

per-frame structural similarity index measure (SSIM) [43] aver-

aged over the 16 predicted frames and the running time.

4.1.3 Ablation Study

In Table 3 we present the results of an ablation study inves-

tigating how 7 architectural variants (V-1 - V-7) affected our

model’s performance and speed.

In the first three architecture variants, we experimented

with convLSTM variants in the decoder. Our model used

a depth-wise separable convLSTM. Variant one (V-1) con-

sisted of standard convLSTMs, V-2 was spatially separable

convLSTMs, and V-3 was depth-wise convLSTMs. SSIM

performance across all three variants was similar, but V-2

(used spatial convLSTM layers) performed slightly better

than the other variants. In the end, we opted for depth-

wise separable convLSTMs because our network ran 21ms

faster than V-2, with very similar performance.

The remaining variants removed or replaced network

components, highlighting the importance of each compo-

nent. In V-4, we removed the lateral connections, stymieing

pixel information in the deconvolution. In V-5, residual

connections were removed, underscoring the importance of

this feature. In V-6, the temporal dilation was set to 1, lim-

iting the model’s temporal information. Finally, in V-7, we

replaced deconvolution with interpolation. We suspect de-

convolution can reconstruct the shape and boundaries more

accurately than interpolation.

4.1.4 Qualitative Analysis

Sample predictions for our model on the JAAD dataset are

shown in Figure 4. The model is able to make accurate

predictions in a wide range of scenarios. In sequence 1 and

sequence 3 of Figure 4, pedestrians are crossing the street in

two different weather conditions (rain/snow), and the model

successfully predicts their positions moving forward from

frame to frame. Similarly in Sequence 2, a car is passing in

the opposite direction, and the model, while not perfect, is

able to predict its trajectory, as well as the position of the

zebra stripes of the crossing area and other stationary ob-

jects as the driver moves forward. Sequence 4 illustrates

that our model can distinguish between moving pedestrians

Model AP Time (ms)

C3D 84.9 93.16

Inception-3D 82.2 104.68
ResNet3D-50 79.6 99.45
T3D 86.7 102.48

Table 4. Evaluation results of future crossing action prediction

with different action recognition networks as extension to our fu-

ture frames prediction component. We report Average Precision

(AP) and the running time. All action recognition networks are

pre-trained on UCF101 dataset and trained using same multi-task

training strategy.

Model AP

Action [26] 39.24± 16.23
Action + Context [26] 62.73± 13.16
Res-EnDec [14] 81.14
Ours ( Separate training ) 85.8
Ours ( Joint training ) 86.7

Table 5. Comparison of average precision (AP) of our model (with

two different training strategies) with state-of-the-art methods for

predicting future crossing action on JAAD dataset

and standing pedestrians, as it accurately predicts the move-

ment of the pedestrian who is crossing the street while the

second pedestrian in the left-hand side of the scene was still

standing in their same initial position.

4.2. Pedestrian Future Crossing Action Prediction

As described in Section 3.1.2, we extended our future

frames prediction component with the T3D network to

classify a predicted future scene as pedestrian crossing/not

crossing. We compared T3D with some variants where we

replace T3D network with other 3D ConvNets networks

for action recognition including C3D [37] and 3D Con-

vNets based on Inception [35] and ResNet-34 [16]. To

make the comparison fair, all action recognition networks

were pre-trained on the UCF101 dataset and then end-to-

end trained to minimize the multi-task learning objective

function shown in equation 1. Table 4 compares average

precision (AP) and running time for predicting future cross-

ing action using only the generated 16 frames. Running

time in Table 4 corresponds to our model’s 16-frame input

and 16-frame prediction, as well as the prediction of future

crossing action. T3D network outperformed other 3D con-

vNets, likely because it modeled variable temporal 3D con-

volution kernel depths over shorter and longer time ranges.

Using JAAD dataset, predicting 16 future frames at a

frame rate of 30 fps corresponds to looking ahead 533ms

in time. Any advantage gained from this is reduced by

the running time of the model. The running time for our

model is 102.48ms which provides a reliable maximum
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Figure 4. Future frames prediction examples on JAAD dataset. We predict 16 frames into the future by observing 16 frames.

look-ahead time of 430ms. This allows 81% of the time

before the occurrence of the final predicted frame to be uti-

lized for defensive reaction.

We also compared AP scores of our model with the re-

sults presented by Rasouli et al. in [26] and Gujjar et al. in

[14] in Table 5. Our model outperformed Action [26], Ac-

tion + Context [26] and Res-EnDec [14] by about 47.5%,

24% and 5.6%, respectively. Our model and Res-EnDec

model outperformed models in [26] with more than 18%,

which reflects the effectiveness of predicting future video

frames and using those frames to predict future crossing

action. Using same action recognition network (C3D) as

in [14], our model achieves 84.9AP (Table 4) which is

3.8% higher than Res-EnDec model. Likely, some of our

improvements can be attributed to the increased quality of

our generated future frames. The remaining improvements

stem from the multi-task training strategy we employ — our

model’s AP rose 0.9% when we implemented this approach,

in agreement with previous findings [28].

5. Conclusion

In this paper, we introduced an end-to-end future-

prediction model that uses previous video frames to pre-

dict the pedestrian’s future crossing action. Our multi-task

model is composed of two stages. The first stage consists in

processing N input video frames using an encoder/decoder

network to predict N future frames. The second stage uti-

lizes the predicted frames to classify the pedestrian’s future

actions. Our end-to-end model predicts a future pedestrian

crossing action with an effective look-ahead of 430ms on

JAAD dataset.

Our end-to-end model achieves state-of-the-art perfor-

mance in model speed (102.48ms), predicting future

frames (0.924SSIM ), and predicting pedestrians crossing

(86.7AP ) on JAAD dataset. Our ablation study demon-

strates the effectiveness of the different model’s compo-

nents on the model performance. Further quantitative and

qualitative experiments have shown the ability of our pro-

posed model across the various weather conditions, loca-

tions and other variables included in the JAAD dataset.

While this is just one step in replicating human-like be-

havior for self-driving cars, the safety of pedestrians is an

essential first step to tackle, and our work has promising

implications for the future of replicating human-like behav-

ior in the context of fully autonomous driving.
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