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Figure 1. Our method provides automatic image retouching. It is a learning-based technique that can be trained using either paired or

unpaired images. Once learned, the input image is fed to a CNN that determines the coefficients of a parametric color transformation that

is applied to the input image. The channel curves are shown in a simplified way as a mapping of R,G,B values.

Abstract

We treat the problem of color enhancement as an im-

age translation task, which we tackle using both supervised

and unsupervised learning. Unlike traditional image to im-

age generators, our translation is performed using a global

parameterized color transformation instead of learning to

directly map image information. In the supervised case, ev-

ery training image is paired with a desired target image and

a convolutional neural network (CNN) learns from the ex-

pert retouched images the parameters of the transformation.

In the unpaired case, we employ two-way generative ad-

versarial networks (GANs) to learn these parameters and

apply a circularity constraint. We achieve state-of-the-art

results compared to both supervised (paired data) and un-

supervised (unpaired data) image enhancement methods on

the MIT-Adobe FiveK benchmark. Moreover, we show the

generalization capability of our method, by applying it on

photos from the early 20th century and to dark video frames.

1. Introduction

The number of captured photos has grown steadily since

the advent of phone cameras. In many cases, casual photos

require additional editing in order to enhance their quality.

While photo editing programs provide various retouching

operations, they require expertise. In addition, the manual

editing process may become time-consuming, depending on

the initial quality.

In this work, we focus on the task of color enhancement.

Color enhancement of raw images significantly improves

the quality for an observer [1]. Yet, an automatic color en-

hancement is a non-trivial task because it depends on con-

tent, context and color distribution.

Color enhancement transformations can be performed by

a global parameterized transformation or by local modifica-

tions. A global transformation applies the same operation to

the whole image and usually uses a smooth function to pre-

serve the quality of the image. Its advantage is the support

of an arbitrary image resolution in a coherent manner. Lo-

cal operations depend on the local content of the image and

often use highly non-linear mappings that lead to artifacts.

Contributions. In this work, we pursue an image en-
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hancement transformation which enjoys the following de-

sired properties: (i) preservation of the quality of the im-

age; (ii) possibility to be applied to an arbitrary resolution

and specifically, high-resolution images; (iii) consumption

of minimal computational resources; (iv) flexibility in train-

ing: the method can be applied with and without paired data

samples. While some of these characteristics are present in

the existing solutions, we are not aware of any work that

incorporates them all together. Our method obtains state-

of-the-art results on the existing image enhancement bench-

marks in both the supervised and unsupervised cases. Par-

ticularly, we show through a user study that our strategy out-

performs the leading techniques in the MIT-Adobe FiveK

raw-images enhancement task and a commercial software

on the enhancement of old color photos.

In the case of supervised learning, one benefits from the

existence of a pair of an input and a retouched image. In the

unsupervised case, training is based on two unmatched sets:

a set of input images and a set of retouched (high quality)

images. Unsupervised learning has the advantage that the

two sets can be collected independently. For example, the

input images can be taken from collections of casual pho-

tography, while high quality images can be collected from

stock photo websites.

The color transformation we use is parameterized as a

quadratic mapping of the color information, i.e., as a lin-

ear mapping of the set of all second order monomials of the

RGB values. The coefficients of this mapping are estimated

with a CNN. One can thus view our CNN as a function that

maps images to quadratic functions. In the supervised case,

this function is optimized with a direct loss. In the unsu-

pervised case, it learns the mapping in both directions, and

employs a circularity constraint. To improve the training

in the latter case, we introduce to it several improvements,

such as weight sharing between the two generators but with-

out sharing the Batch Normalization [10] parameters, and a

novel multi-phase training technique.

Unlike previous GAN-based image-to-image enhance-

ment techniques, e.g., [4], our generator can enhance im-

ages for an arbitrary resolution without suffering from ar-

tifacts that appear in previous GAN based solutions. This

is achieved because our network determine the parameters

of a global adjustment operation from a low-resolution ver-

sion of the image and apply it on the full-resolution im-

age, instead of being applied directly as an image to image

mapping. Compared to reinforcement learning methods that

have been used for image enhancement [17, 8], and require

a sequential application of a deep network, we need just a

single pass of a relatively simple CNN. The gain in effi-

ciency that arises from these advantages makes our method

especially suitable for running on limited resource devices,

such as low-end smart-phones and on the camera itself.

2. Related Work

Several research works considered the problem of auto-

matic color enhancement. They may be divided into two

types: (i) Example-based methods transferring the color of

an example image to a given input image; and (ii) Learning-

based techniques that use a training data to find a mapping

function from the input image to a target image. Some of

these works can be trained only in the presence of paired

data, which limits their usage to the supervised case.

Among the example-based methods, Reinhard et al. [18]

and Faridu et al. [6] present a method where the global color

distribution of an input image is warped to mimic an ex-

ample style. Some recent works use image retrieval meth-

ods to achieve a (semi-)automate exemplar selection, which

improves the matching [9],[14], [15]. While the example-

based strategy can provide expressive enhancement and

diverse stylizations, the results greatly depend on having

proper example images. Moreover, even if they are given,

the matching of input images to good example images is a

challenging task.

We focus here mainly on learning based methods, which

lead to improved results [4, 17, 23, 7, 2, 8]. Many of these

contributions, especially those applying supervised learn-

ing, employ the MIT-adobe FiveK dataset presented by By-

chkovsky et al. [3]. It contains retouched pairs of images

which are created by five professional experts.

Among the learning-based color enhancement methods,

there are learned local transformations [23, 7, 4]. Yan et

al. [23] have proposed a model that given the color, global

and local features of an image, such as semantic content and

object detection, a deep neural network maps each pixel to

achieve the desired style. Gharbi et al. [7] have trained a

model to predict local affine transforms in the edge/color bi-

lateral space, which can serve as an approximation to edge-

aware image filters and color/tone adjustments for real-time

image enhancement.

In the more general field of cross-domain image trans-

lation, Isola et al. [11] proposed a conditional adversarial

network as a general-purpose solution to image-to-image

translation problems, converting from one representation of

a scene to another, e.g., from a semantic label map to a

realistic image or from a day image to its night counter-

part. Although generating very good results, their method

requires paired images for training. Two-ways GANs were

later proposed and introduced cycle consistency to address

this problem. Examples of such GAN based solutions in-

clude CycleGAN [25], DiscoGAN [12] and DualGAN [24].

Based on these strategies, Chen et al. [4] train a one-

way and two way ”traditional” GAN for image to image

enhancement with 512×512 resolution images. However, it

fails to perform enhancement on arbitrary resolutions, since

an image enhancement operation needs to be determined

by examining the content and context of the entire image.
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While their generator is fully convolutional, since it has a

limited receptive field it does not capture the whole image

when it is of high resolution. Another drawback of such a

local color operation is the possible artifacts and relatively

high memory consumption it has when applied to a high

resolution image.

As an alternative, global parameterized transformations

have been recently proposed for color enhancement [17, 8,

2] and image processing [19]. Hu et al. [8] learn a one-

way GAN based agent, which is trained using reinforce-

ment learning (RL) with an adversarial reward to perform a

sequence of image enhancement operations such as modi-

fying the contrast or the brightness.

Park et al. [17] train an agent using RL to enhance the

input image using similar image enhancement operations

in both the supervised and unsupervised cases. For un-

paired learning, they propose the distort and recover train-

ing scheme, which generates an input image for training

by distorting retouched images. The model is trained to

map the distorted images back to the originally retouched

ones. Although achieving improved results, given an un-

paired training set, the scheme requires adjustment of the

distortion procedure such that it produces distorted images

with similar characteristics as the input images in the set.

Bianco et al. [2] recently proposed a different enhance-

ment method, which generates a series of parametric oper-

ations in color space such as polynomial, piecewise linear,

cosine, and radial functions, where the CNN network deter-

mines how they are applied in order to perform the desired

color transformations.

3. Method

Our photo enhancer model GX takes an input image x
and generates an output image GX(x) as the enhanced ver-

sion of it. The model is a per-pixel color transformation

designed to preserve the quality of the image and requires

limited computation at full resolution. To enhance the color

of an input image, a fixed sized down-sample version of an

input image x is forwarded to a CNN H to infer the pa-

rameter matrix θx of the color transformation. The color

transformation is applied independently to each pixel in x.

3.1. Parametrized Quadratic Transformer

The image enhancement method we propose is based on

a CNN, defined as H , which determines the coefficients of

a global image enhancement operation. We formulate H as

a parametric function θx = H(θ, x), where θ represents the

CNN parameters, x the input image, and θx the parameters

of the transformation of the color space for image x.

To get a transformation that preserves the image high

frequencies and content without artifacts but yet is pow-

erful enough to mimic the image enhancement transfor-

mation produced by image editing software, we use color

basis vectors. Let V (p) be the color basis vector for a

pixel with RGB values p = [R,G,B]. In our work, we

define V (p) to be a 1 × 10 quadratic color basis vector

[R,G,B,R2, G2, B2, R ·G,G ·B,B ·R, 1], where R,G,B

are the corresponding RGB values at pixel p.

For an input image x, H outputs a matrix θx ∈ R
10×3,

which contains the coefficients of the quadratic transforma-

tion applied to each pixel in x. We perform an additive

correction, and learn the residual transformation, which is

known to speed up training, compared to learning the target

function from scratch. Thus, the RGB value in the output

image ȳk of same location as pixel p in the input image xk

is:

p̄ =H(θ, xk)V (p) + p. (1)

In order to be invariant to the resolution of the input im-

age, we use a 256 × 256 scaled (typically down-sampled)

version of the images as the input of the CNN, H . The

color transformation is then applied to all image pixels of

the original image, regardless of its resolution. The abil-

ity to perform the transformation at every image resolution

is a clear advantage in comparison to other literature ap-

proaches, some of which rely on an encoder-decoder archi-

tecture with a fixed output resolution.

3.2. Training for paired data

For paired learning, we used a five-branch processing

network. Each branch consists of a stack of convolutional

layers that ends by average pooling as a feature extractor

and two linear layers. We further process the output of the

five branches with another linear layer. Due to the relatively

small size of the paired training set, we add Dropout [20] to

the network to prevent over-fitting. A figure presents the ar-

chitecture of our generator for the paired model attached in

supplementary material

Figure 2 depicts our paired training scheme. We opti-

mize the output of the transformer with the mean L2-loss

CIELab color space between the transformed image and the

expert retouched image. L2 in CIELab color space is de-

fined as the Euclidean distance:

L2 =
√

(l1 − l2)2 + (a1 − a2)2 + (b1 + b2)2, (2)

where (l1; a1; b1) and (l2; a2; b2) are the coordinates of a

pixel in the two images after their conversion from RGB to

CIELab. In our case, the two images are ȳk = G(xk) and

yk.

3.3. Training for unpaired data

For unpaired data, the problem can be naturally formu-

lated using the framework of two-way GANs, which learn

the embedding of the input samples and generate output

samples located within the distribution of the target sam-

ples. Such frameworks have been frequently used to address
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Figure 2. Pipeline of the proposed method for paired training. The

input image is down-sampled and fed to a CNN that determines

the coefficients for our quadratic parameterized color transforma-

tion to be applied to the input image. At test time, the quadratic

transformation is applied to the full resolution image.

Figure 3. The architecture of our two-way GANs.

the image-to-image translation problem, which transforms

an input image from the source domain X to an output im-

age in the target domain Y . Each GAN model often consists

of a discriminator D and a generator G. In our case, G has

a specific parametric form.

Recall that the source domain X contains the input im-

ages, while the target domain Y contains unmatched im-

ages with the desired characteristics. To match between

the two in the absence of direct pairing, two-way GANs

such as CycleGAN [25] and DualGAN [24] enforce cycle

consistency, which creates a pairing between the sets X
and Y . Two-way GANs often contain a forward mapping

GX : X → Y and a backward mapping GY : Y → X . The

cycle consistency conditions require that GY (GX(x)) = x
and GX(GY (y)) = y, where the generator GY takes a GX -

generated sample and maps it back to the source domain X ,

while the generator GX takes a GY -generated sample and

maps it back to the target domain Y .

Figure 3 describes the architecture of a two-way GAN.

The discriminator DY aims at distinguishing between the

samples in the target domain Y and the generated sam-

ples y′ = GX(x), while the discriminator DX aims at dis-

tinguishing between the samples in the target domain X
and the generated samples x′ = GY (y). We define by

x′′ = GY (GX(x)) the output for a training image x ∈ X ,

which passes through both generators, and in a similar way

we define y′′ = GX(GY (y)) for an image y ∈ Y .

The cycle consistency losses are given by:

LcycleX = ||x
′′

− x||2

LcycleY = ||y
′′

− y||2,
(3)

where || · ||2 is the Euclidean L2 norm (see Eq. (2)).

The adversarial loss is given by

LGAN (Gx, DY , X, Y ) =Ey∼pdata(y)
)[logDY (y)]+

Ex∼pdata(x)
[1− logDY (Gx(x))].

(4)

We did not employ the identity term used in many image to

image translation frameworks, due to the different distribu-

tion characteristics of the datasets X and Y and the usage

of Batch Normalization in our networks.

To summarize, the loss we use for the unpaired training

is

αLcycleX + αLcycleY + (5)

LGAN (Gx, DY , X, Y ) + LGAN (Gy, DX , Y,X),

where α is a scaling parameter.

The generator architecture for unpaired learning is simi-

lar to the one used for paired learning but is deeper and with

only one branch to reduce the overall number of parameters

in it. Moreover, in the training of the network, we do not

use the Dropout layer at the initial training (we add another

training phase described in Section 3.4, where we do apply

the Dropout).

Our discriminator architecture is the same one used in

CycleGAN [25]. It consists of a stack of convolutional lay-

ers followed by Batch Normalization, a Leaky rectified lin-

ear unit (ReLU) [16] and Dropout. A figure describes both

the generator and the discriminator architectures used in our

unpaired model attached in supplementary material.

3.4. Improving unpaired training

In order to improve the result of the unsupervised

method, we use the following modifications. First, we share

the feature extractor weights of the generators GX and GY ,

except of the linear layers and the Batch Normalization pa-

rameters, which should be different due to the different dis-

tribution characteristics of the datasets X and Y . Figure 4

describes the transformers’ shared parameters.
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Figure 4. Illustration of the shared weights in the generators GX

(left) and GY (rigth) in the unpaired case. Notice that the param-

eters of Batch Normalization and the linear layers are not shared.

In addition, we introduce a novel cycle-consistency

training, which we refer to as the second phase. In this

phase, we apply the Dropout in GX and GY (the location

of the Dropout layers described in the architecture figure

in supplementary material), but do not share their weights

and use only the cycle-consistency losses. The motivation

is to increase the generalization of the generator to random

perturbation generated by Dropout. Due to using the cycle-

consistency losses exclusively (without the regular GAN

loss), we train only GX and freeze GY . Training both gen-

erators simultaneously, without the GAN losses, will end up

by simply outputting the input image as this leads to a zero

loss. Thus, when training GX we use only the loss term

||y
′′

− y||2 (see part A in Figure 3).

This training technique can be seen as an improvement of

the distort and recover scheme proposed by [17], but unlike

them we learn the “distortion” (mapping from retouched

images to the raw images) and ”recovery” (mapping from

the raw to the retouched) using the first phase and our sec-

ond phase optimizes the generator to perform these tasks

with some random perturbations.

4. Experiment

We evaluate our model’s ability to reproduce human-

annotated retouches through extensive experiments: (1)

Evaluation on input-retouched paired dataset in Sec-

tion. 4.1. (2) Evaluation on input-retouched unpaired

dataset in Section 4.2. (3) Ablation study of our proposed

training techniques in Section 4.1.1 and Section 4.2.1. (4)

Evaluation of the paired and unpaired method with a user

study in Section 4.3.

To assess the accuracy of our proposed method, we used

the MIT-Adobe FiveK dataset, which contains 5,000 high

resolution raw images in DNG format, and their corre-

sponding manually retouched images by five variants; each

retouched by a different expert A/B/C/D/E. Expert C got the

highest Mean Opinion Score(MOS), so we follow the com-

mon practice and use the images created by this expert as

the target.

We use the procedure described by [8] to preprocess the

raw images and export them to the SRGB format [21]. As

a performance measure, we calculate the mean L2 on the

CIELab color space [5], and the SSIM [22] and PSNR in

the RGB color space. All the errors are with respect to the

results of expert C on the test set images.

4.1. Paired data

We split the MIT-adobe FiveK dataset into train and test

images. Each literature method splits the data differently

and the train-test split of some leading methods is not avail-

able. For a fair comparison, we chose a train-test split that

contains the smallest amount of training images in the liter-

ature, which is 4000. To reduce the randomness that arises

from the splitting process, we randomly split the data five

times, trained our model and averaged the measured perfor-

mance. We also show our result on the exact same train-test

split used by Chen et al. [4].

We trained the model with a batch size of 50 and the

Adam optimizer [13] for 500 epochs. We used a base learn-

ing rate 9 · 10−4 and linearly decayed it every 30 epochs up

to 2 ·10−6 at epoch 300. We used rotations and vertical flips

as augmentation.

Table 1 compares our method with all leading paired

training methods. Since not all experiments in the litera-

ture are done under the same conditions, we detail in the

table, the transformation method, train-test split, and the im-

age resolution used for evaluation, in addition to the mean

L2 in CIELab color space, SSIM and PSNR in RGB color

space. Our method achieves better prediction performance

in terms of mean L2, SSIM and PSNR than all the other

methods. When comparing to global transformation tech-

niques, our margin is even higher. When comparing to local

approaches, the L2 measure does not capture the local arti-

facts created by these methods, which is a known limitation

they have [23, 7, 4].

4.1.1 Alternative architectures

In order to evaluate our multi-branch processing architec-

ture for paired learning as detailed in Sec. 3.2, we report

the performance of the following setups. Complete Method:

our proposed model; Three branches generator: our model

but with three branches; Single branch generator our best

single branch architecture for paired learning, which we

also use for unpaired learning.

We evaluated the result on a train-test split 4000-1000

996



input expert ours ours DPE Exposure HDR-net

paired unpaired unpaired unpaired paired

[4] [8] [7]
Figure 5. Qualitative comparison with [4, 8, 7]. We compare both full image and the zoom-in version of the image.

method ↓mean L2 ↑SSIM ↑PSNR color Train-Test split Resolution number of

operation forward path

Ours 9.40 0.920 23.93 global 4000-1000 Full-Size 1

Learning Parametric 10.36 NA NA global 4000-1000 Full-Size 1

Functions [2]

Distort-and-Recover [17] 10.99 0.905 NA global 4750-250 NA multiple

Automatic Photo [23] 9.85 NA NA local 4750-250 Full-Size per pixel

HDR-Net [7] 12.14 NA NA local 4750-250 Full-Size 1

Ours, splits of [4] 9.05 0.937 24.11 global 4500-500 512 long side 1

Photo Enhancer [4] NA NA 23.8 local 4500-500 512 long side 1

Table 1. Comparison of leading paired base methods evaluated by the mean L2, SSIM and PSNR with respect to the expert target using

the MIT-Adobe FiveK dataset.

using 256 × 256 resolution image from the MIT-Adobe

FiveK dataset. Table 2 demonstrates the effect of the multi-

branch processing.

4.2. Unpaired Data

We split the MIT-adobe FiveK dataset into n training im-

ages and 5000 − n test images. The training images split

into n/2 unpaired raw images and n/2 different target im-

ages. Thus, we make sure that the training dataset does not

contain a pair of both raw and the corresponding retouched

image. Without this separation, an unsupervised method

may implicitly match the images and then rely on a form

of supervised training. For a fair comparison, we use the

exact same train-test split as in [17, 4], which are the cur-

rent leading methods for global and local transformation for

unpaired learning, respectively. We also use a random split

of the same size reported by [8], in the absence to the exact

splits.

997



method ↓mean L2

Complete Method 9.05

Three branches generator 9.15

Single branch generator 9.40

Table 2. Evaluation of our multi-branch processing for paired

learning. We report the mean L2 for the three architectures on

the 1000 testing images from the MIT-Adobe FiveK dataset using

256 × 256 image resolution. Note that the results of Tab. 1 are

given for the full resolution.

The first phase was trained with batch size of 20 with

the Adam optimizer for 200 epochs. We kept the learning

rate at 10−4 for the first 100 epochs and linearly decayed the

rate to zero over the next 100 epochs. We used rotations and

vertical flips for augmentation. The discriminator Dropout

value was set to 0.12 and α was set to 0.02.

For the second phase, we trained using batch size of

50. We kept the learning rate at 5 · 10−6 for the first 100

epochs and linearly decayed the rate to zero over the next

100 epochs. The generators Dropout value was set to 0.15,

while other hyper-parameters remained unchanged.

Table 3 compares our method with all leading image

enhancement methods that are trained with unpaired data.

Comparison is done with mean L2 in LAB space, SSIM

and PSNR in RGB space. In addition, we detail the trans-

formation method, train-test split, and the image resolution

used for evaluation. Our method achieves better predic-

tion performance in terms of L2, SSIM, and PSNR, and

presents our flexibility for arbitrary resolutions, and specif-

ically, high resolution outputs.

Figures 5 show examples of our method, in both the

paired and unpaired training scenarios, compared with ex-

pert C and the leading enhancement methods available,

more results attached as supplementary material.

4.2.1 Ablation Study

In order to evaluate our training techniques, as detailed

in Section 3.4, we report the following setups: Complete

Method: our full model as described; No shared weights:

GX and GY do not share their weights; First phase only:

training with only the first phase (without the second cycle-

consistency phase); First phase only with Dropout: train-

ing only the first phase, but adding dropout, similar to the

second phase; Complete Method without Dropout: perfor-

mance of our full model but without adding dropout to the

second phase; Raw method: a single phase training, with-

out dropout and without weight sharing.

We evaluated the result on train-test split 2000-2000-

1000 using 256 × 256 image resolution from MIT-Adobe

FiveK dataset. Table 4 demonstrates the effect of the in-

dividual components to the success of the training process.

Figure 6. User study results. Top: comparison to [4] in both the

paired (left) and unpaired cases (right). Bottom-left: a comparison

to [7] in the unpaired case. Bottom-right: a comparison to Adobe

lightroom on old color photos. Both [4] and our methods were

both trained with the same train-test split on MIT-ADOBE FiveK

dataset. For comparing to [7], we used images from the test set of

both methods.

Sharing weights seem to have the largest effect, especially

when training in two phases. The second phase of training

contributes a relatively small improvement.

4.3. User study

We conducted a user study to compare our retouching

results to other leading methods with available code. The

user study was conducted on Amazon Mechanical Turk us-

ing pairwise comparisons and included 20 participants and

50 images. We presented to the users the images next to a

zoom-in crop in a fixed location for each method. The users

were asked to rate based on the visual colors and quality of

the images, which image is better or if they are the same if

they cannot decide. The images were randomly taken from

the intersection of the method’s test set. Figure 6 describes

the results of the user study. Both of our paired and un-

paired models are clearly preferred by the users over the

other tested methods.

4.4. Applications

Although our model was trained only on RAW input im-

ages, we checked its generalization using some of the first

color photos from the early 20th century1 and for a video

scene from Game of Thrones, an American TV series.

Color photos from the early 20th: In order to evaluate

our result, we randomly picked 50 images out of the avail-

able 116 images and compared them to the results of Adobe

Lightroom, a leading commercial software. We used the

Lightroom Auto-Tune feature to enhance the images. Sam-

ples of the enhancement results of both methods attached in

1https://www.boredpanda.com/first-color-photos-vintage-old-

autochrome-lumiere-auguste-louis/
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method ↓mean L2 ↑SSIM ↑PSNR color Train-Test split Resolution number of

operation forward path

Ours 10.97 0.91 22.95 global 2375-2375-250 Full-Size 1

Distort-and-Recover [17] 12.15 0.91 NA global 4750-250 NA multiple

Ours 10.86 0.91 22.67 global 2000-2000-1000 Full-Size 1

Exposure [8] 16.98 NA NA global 2000-2000-1000 Full-Size multiple

Ours 10.38 0.93 23.07 global 2250-2250-500 512 long side 1

Deep Photo Enhancer [4] NA NA 22.37 local 2250-2250-500 512 long side 1

Table 3. A comparison of image enhancement methods trained with unpaired data. Results are evaluated by mean L2, SSIM, and PSNR

with respect to the expert target using the MIT-Adobe FiveK dataset.

method ↓mean L2

Complete Method 10.43

No shared weights 17.58

First phase only 10.75

First phase only with Dropout 10.74

Complete Method without Dropout 10.76

Raw method 15.32

Table 4. Evaluation of our unpaired training techniques. The

mean L2 for different training procedures on the 1000 testing im-

ages from the MIT-Adobe FiveK dataset using 256 × 256 image

resolution. Note that the results of Tab. 3 are given for the full

resolution.

supplementary materials.

We conducted a user study with 20 participants and 50

images using pairwise comparisons. We presented to the

users the output of our method next to the Lightroom result.

The users were asked to rate them based on the visual colors

by selecting which image is better or stating that they are the

same if they cannot decide. Samples of the enhancement re-

sults of both methods attached in supplementary materials.

Figure 6 shows our superiority through the user study result.

Game of Thrones: Game of Thrones recently released an

episode that quickly became known as “the dark episode”

since it consisted of dark and muddy scenes. To evaluate the

ability of our method to perform a correction out of the box,

we apply it to each frame individually, without any modifi-

cation. For comparison, we also enhanced the video frames

using Adobe Lightroom. Video results and sample images

are attached as supplementary materials. As can be seen,

our method outputs a natural looking frame, while Light-

room emphasizes the artifact in the coded video.

5. Conclusions

We presented an automatic photo enhancer, which trans-

forms input images to be with the characteristics of a given

target set. Our method employed a parameterized color

mapping and can be trained using either supervised or un-

supervised learning. To improve performance in the unsu-

pervised case, we introduced multiple training techniques

such as weight sharing with individual Batch Normalization

and a two-phase training process. In both types of super-

vision, the method achieves state-of-the-art results on the

MIT-adobe FiveK dataset and shows superiority in a user

study comparing it to literature methods as well as to a com-

mercial software.

Applying our method, once trained, requires only one

forward pass, unlike the reinforcement learning methods [8,

17]. Moreover, its transformation is determined from a low-

resolution version of the input image, which leads to low

computational demands. Yet, it can be applied to arbitrary

resolutions, unlike [4] who require an input with a given

resolution. Moreover, it employs a smooth global mapping

function that prevents artifacts, which is advantageous over

all the local modification methods [4, 7, 23], which report

artifacts in their limitation.

Our method deviates from the current trend of learning

complex mappings between the input domain and the out-

put domain, with an ever increasing capacity, which is bal-

anced by regularization and skip connections. Instead, we

apply a simple parametric transformation and couple it with

a learned mechanism that provides the precise transforma-

tion parameters to every input image.
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