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Abstract

The main progress for action segmentation comes

from densely-annotated data for fully-supervised learning.

Since manual annotation for frame-level actions is time-

consuming and challenging, we propose to exploit auxil-

iary unlabeled videos, which are much easier to obtain, by

shaping this problem as a domain adaptation (DA) prob-

lem. Although various DA techniques have been proposed

in recent years, most of them have been developed only for

the spatial direction. Therefore, we propose Mixed Tem-

poral Domain Adaptation (MTDA) to jointly align frame-

and video-level embedded feature spaces across domains,

and further integrate with the domain attention mechanism

to focus on aligning the frame-level features with higher do-

main discrepancy, leading to more effective domain adap-

tation. Finally, we evaluate our proposed methods on three

challenging datasets (GTEA, 50Salads, and Breakfast), and

validate that MTDA outperforms the current state-of-the-art

methods on all three datasets by large margins (e.g. 6.4%

gain on F1@50 and 6.8% gain on the edit score for GTEA).

1. Introduction

Action segmentation is of significant importance for a

wide range of applications, including video surveillance and

analysis of daily human activities. Given a video, the goal

is to simultaneously segment the video by time and predict

each segment with a corresponding action category. While

video classification has shown great progress given the re-

cent success of deep neural networks [40, 26, 25], tem-

porally locating and recognizing action segments in long

untrimmed videos is still challenging.

Action segmentation approaches can be factorized into

extracting low-level features using convolutional neural net-

works and applying high-level temporal models. Encour-

aged by the advances in speech synthesis [28], recent ap-

proaches rely on temporal convolutions to capture long

∗Work done during an internship at Baidu USA

Local 

Temporal 

Domain 

Adaptation

Global 

Temporal 

Domain 

Adaptation

Domain Attentive

Frame Aggregation

Source Target
Input 

videos

Domain Attentive

Frame Aggregation

Temporal 

Convolution

Temporal 

Convolution

Figure 1: An overview of the proposed MTDA for action

segmentation. “Source” refers to the data with labels, and

“Target” refers to the unlabeled data with the standard trans-

ductive setting for DA. We first extract local temporal fea-

tures using temporal convolution, and then obtain global

temporal features with domain attentive frame aggregation.

Finally, we diminish the domain discrepancy by jointly per-

forming local and global temporal domain adaptation. Here

we use the video making tea as an example.

range dependencies across frames using a hierarchy of tem-

poral convolutional filters [17, 4, 19, 7].

Despite the success of these temporal models, the perfor-

mance gains come from densely-annotated data for fully-

supervised learning. Since manually annotating precise

frame-by-frame actions is time-consuming and challenging,

these methods are not easy to extend to larger scale for real-

world applications.

In this paper, we regard action segmentation as a do-

main adaptation (DA) problem with the transductive set-
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ting [29, 3] given the observation that the main challenge

is the distributional discrepancy caused by spatio-temporal

variations across domains. For example, different people

(also noted as subjects) may perform the same action with

different styles in terms of spatial locations and tempo-

ral duration. The variations in the background environ-

ment also contribute to the overall domain discrepancy. To

solve this problem, we propose to diminish the domain dis-

crepancy by utilizing auxiliary unlabeled videos, which are

much easier to obtain.

Videos can suffer from domain discrepancy along both

the spatial and temporal directions, bringing the need of

alignment for embedded feature spaces along both direc-

tions [2]. However, most DA approaches have been devel-

oped only for images and not videos [22, 24, 10, 11, 21,

20, 33]. Therefore, we propose Mixed Temporal Domain

Adaptation (MTDA) to jointly align frame- and video-

level embedded feature spaces across domains, as shown in

Figure 1. We further integrate with the domain attention

mechanism to focus on aligning the frame-level features

with higher domain discrepancy, leading to more effective

domain adaptation. To support our claims, we evaluate

our approaches on three datasets with high spatio-temporal

domain discrepancy: Georgia Tech Egocentric Activities

(GTEA) [8], 50Salads [35], and the Breakfast dataset [14],

and achieve new state-of-the-art performance on all three

datasets. Since our approach can adapt a model trained

in one environment to new environments using only unla-

beled videos without additional manual annotation, it is ap-

plicable to large-scale real-world scenarios, such as video

surveillance.

In summary, our contributions are three-fold:

1. Local Temporal Domain Adaptation: We propose

an effective adversarial-based DA method to learn

domain-invariant frame-level features. To the best of

our knowledge, this is the first work to utilize un-

labeled videos as auxiliary data to diminish spatio-

temporal variations for action segmentation.

2. Mixed Temporal Domain Adaptation (MTDA): We

jointly align local and global embedded feature spaces

across domains by integrating additional DA mecha-

nism which aligns the video-level feature spaces. Fur-

thermore, we integrate the domain attention mech-

anism to aggregate domain-specific frames to form

global video representations, leading to more effective

domain adaptation.

3. Experiments and Analyses: We evaluate on three

challenging real-world datasets and outperform all the

previous state-of-the-art methods. We also perform

analysis and ablation study on different design choices

to identify key contributions of each component.

2. Related Works

In this section, we review the most recent work for action

segmentation including the fully- and weakly-supervised

setting. We also review the most related domain adaptation

work for images and videos.

Action Segmentation. Encouraged by the advances in

speech synthesis [28], recent approaches rely on tempo-

ral convolutions to capture long-range dependencies across

frames using a hierarchy of temporal convolutional fil-

ters [17, 4, 19, 7]. ED-TCN [17] follows an encoder-

decoder architecture with a temporal convolution and pool-

ing in the encoder, and upsampling followed by deconvo-

lution in the decoder. TricorNet [4] replaces the convolu-

tional decoder in the ED-TCN with a bi-directional LSTM

(Bi-LSTM). TDRN [19] builds on top of ED-TCN [17] and

use deformable convolutions instead of the normal convo-

lution and add a residual stream to the encoder-decoder

model. MS-TCN [7] stacks multiple stages of temporal

convolutional network (TCN) where each TCN consists of

multiple temporal convolutional layers performing acausal

dilated 1D convolution. With the multi-stage architecture,

each stage takes an initial prediction from the previous stage

and refines it. We build our approach on top of MS-TCN,

focusing on developing methods to effectively exploit unla-

beled videos instead of modifying the architecture.

Domain Adaptation. Most recent DA approaches are

based on deep learning architectures designed for address-

ing the domain shift problems given the fact that the deep

CNN features without any DA method outperform tradi-

tional DA methods using hand-crafted features [6]. Most

DA methods follow the two-branch (source and target) ar-

chitecture, and aim to find a common feature space between

the source and target domains. The models are therefore

optimized with a combination of classification and domain

losses [3].

One of the main classes of methods used is Discrepancy-

based DA, whose metrics are designed to measure the

distance between source and target feature distribu-

tions, including variations of maximum mean discrepancy

(MMD) [22, 23, 45, 44, 24] and the CORAL function [37].

By diminishing the distance of distributions, discrepancy-

based DA methods reduce the gap across domains. Another

common method, Adversarial-based DA, adopts a similar

concept as GANs [12] by integrating domain discrimina-

tors into the architectures. Through the adversarial objec-

tives, the discriminators are optimized to classify differ-

ent domains, while the feature extractors are optimized in

the opposite direction. ADDA [39] uses an inverted label

GAN loss to split the optimization into two parts: one for

the discriminator and the other for the generator. In con-

trast, the gradient reversal layer (GRL) is adopted in some

works [10, 11, 46] to invert the gradients so that the dis-

criminator and generator are optimized simultaneously. Re-
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cently, TADA [41] adopts the attention mechanism to adapt

the transferable regions and images. Differently, we design

the attention mechanism for spatio-temporal domains, aim-

ing to attend to the important parts of temporal dynamics

for domain adaptation.

Domain Adaptation for Actions. Unlike image-based DA,

video-based DA is still an under-explored area. A few

works focus on small-scale video DA with only few over-

lapping categories [36, 43, 13]. [36] improves the domain

generalizability by decreasing the effect of the background.

[43] maps source and target features to a common feature

space using shallow neural networks. AMLS [13] adapts

pre-extracted C3D [38] features on a Grassmann manifold

obtained using PCA. However, the datasets used in the

above works are too small to have enough domain shift to

evaluate DA performance. Recently, Chen et al. [2] propose

two larger cross-domain datasets for action recognition and

the state-of-the-art approach TA3N. However, these works

focus only on the classification task while we concentrate

on the more challenging temporal segmentation task.

3. Technical Approach

We first introduce our baseline model which is the cur-

rent state-of-the-art approach for action segmentation, MS-

TCN [7] (Section 3.1). And then we describe how we

incorporate unlabeled video to align frame-level feature

spaces (Section 3.2), and present our proposed method with

the attention-based video-level domain adaptation (Sec-

tion 3.3).

3.1. Baseline Model: MS­TCN

The basic component of our baseline model is single-

stage temporal convolutional network (SS-TCN), as shown

in the left part of Figure 2. SS-TCN consists of multi-

ple temporal convolutional layers performing acausal di-

lated 1D convolution. Dilated convolution is used to in-

crease the temporal receptive field exponentially without

the need to increase the number of parameters, which can

prevent the model from over-fitting the training data. Mo-

tivated by the success of multi-stage architectures [42, 27],

several SS-TCNs are stacked to form the multi-stage TCN

(MS-TCN). Each stage takes the prediction from the pre-

vious stage and utilizes the multi-layer temporal convolu-

tion feature generator Gf to obtain the frame-level features

f = {f1, f2, ..., fT }, and then converts them into the frame-

level predictions ŷ = {ŷ1, ŷ2, ..., ŷT } by a fully-connected

layer Gy .

The overall prediction loss function for each stage is a

combination of a classification loss and a smoothing loss,

which can be expressed as follows:

Ly = Lcls + αLT−MSE (1)
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Figure 2: We perform local temporal DA by applying the

domain classifier Gld to the final embedded features f in one

stage. A gradient reversal layer (GRL) is added between

Gld and f so that f is trained to be domain-invariant. ŷ is the

frame-level predictions for each stage. Ly and Lld are the

prediction loss and local domain loss, respectively.

where Lcls is a cross-entropy loss, LT−MSE is a truncated

mean squared error used to reduce the difference between

adjacent frame-level prediction to improve the smoothness,

and α is the trade-off weight for the smoothness loss. To

train the complete model, we minimize the sum of the losses

over all stages.

3.2. Local Temporal Domain Adaptation

Despite the progress of MS-TCN on action segmenta-

tion, there is still a large room for improvement. The main

challenge is the distributional discrepancy caused by spatio-

temporal variations across domains. For example, different

subjects may perform the same action completely different

due to personalized spatio-temporal styles. Therefore, the

problem becomes generalizing the model across domains.

In this paper, we propose to reduce the domain discrepancy

by performing unsupervised DA with auxiliary unlabeled

videos.

Encouraged by the success of adversarial-based DA ap-

proaches [10, 11], for each stage, we feed the frame-level

features f to an additional shallow binary classifiers, called

the local domain classifiers Gld, to discriminate whether

the data is from the source or target domain. Before back-

propagating the gradients to the main model, a gradient re-

versal layer (GRL) is inserted between Gld and the main

model to invert the gradient, as shown in Figure 2. During

adversarial training, Gf is learned by maximizing the do-

main discrimination loss Lld, while Gld is learned by min-

imizing Ld with the domain label d. Therefore, the feature

generator Gf will be optimized to gradually align the fea-

ture distributions between the two domains. In this paper,

we note the adversarial local domain classifier Ĝld as the

combination of a GRL and a domain classifier Gld, and in-

vestigate the integration of Gld for different stages. From

our experiments, the best performance happens when Glds
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are integrated into middle stages. For more details, please

see Section 4.5.

The overall loss function becomes a combination of the

baseline prediction loss Ly and the local domain loss Lld,

which can be expressed as follows:

L =

Ns∑
Ly −

Ñs∑
βlLld

(2)

Lld =
1

T

T∑

j=1

Lld(Gld(fj), dj) (3)

where Ns is the total stage number, Ñs is the number of

selected stages, and T is the number of frames from each

video. Lld is a binary cross entropy loss function, and βl is

the trade-off weight for local domain loss Lld.

3.3. Mixed Temporal Domain Adaptation

One main drawback of integrating DA into local frame-

level features f is that the video-level feature space is still

not fully aligned. Although f is learned using the context

and dependencies from neighbor frames, the temporal re-

ceptive field still not guarantees to cover the whole video

length. Furthermore, aligning video-level feature spaces

also helps to generate domain-adaptive frame-level predic-

tions for action segmentation. Therefore, we propose to

jointly align local frame-level feature spaces and global

video-level feature spaces, as shown in Figure 5.

Global Temporal Domain Adaptation. To achieve this

goal, we first aggregate f = {f1, f2, ..., fT } using temporal

pooling to form video-level feature V . Since each feature ft
captures context in different time by temporal convolution,

V still contain temporal information despite the naive tem-

poral pooling method. After obtaining V , we add another

domain classifier (noted as global domain classifier Ggd) to

explicitly align the embedded feature spaces of video-level

features.

Therefore, the global domain loss Lgd is added into the

overall loss, which can be expressed as follows:

L =

Ns∑
Ly −

Ñs∑
(βlLld + βgLgd)

(4)

Lgd = Lgd(Ggd(Gtf (f)), d) (5)

where Lgd is also a binary cross entropy loss function, and

βg is the trade-off weight for global domain loss Lgd.

Domain Attention Mechanism. Although aligning video-

level feature spaces across domains benefits action segmen-

tation, not all the frame-level features are equally important

to align. In order to effectively align overall temporal dy-

namics, we want to focus more on aligning the frame-level

features which have larger domain discrepancy. There-

fore, we assign larger attention weights to those features,

as shown in Figure 3.
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Figure 3: The overview of global temporal DA with the

domain attention mechanism. Frame-level features are ag-

gregate with different attention weights to form the video-

level feature h for global domain DA. Thicker arrows cor-

responds to larger attention weights.
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Figure 4: The details of the domain attention mechanism,

consisting of two modules: domain attentive temporal pool-

ing (left) and domain attentive entropy (right). Both mod-

ules use the domain prediction d̂ to make their inputs do-

main attentive with a residual connection. Lae is the atten-

tive entropy loss.

Hence, we integrate each stage with the domain atten-

tion mechanism, as shown in Figure 4, which utilizes the

entropy criterion to generate the domain attention value for

each frame-level feature as below:

wj = 1−H(d̂j) (6)

where d̂j is the domain prediction from Gld. H(p) =
−
∑

k pk · log(pk) is the entropy function to measure uncer-

tainty. wj increases when H(d̂j) decreases, which means

the domains can be distinguished well. We also add a resid-

ual connection for more stable optimization. Finally, we

aggregate the attended frame-level features with temporal

pooling to generate the video-level feature h, which is noted
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Figure 5: The overall architecture of the proposed MTDA. By equipping with a local adversarial domain classifier Ĝld, a

global adversarial domain classifier Ĝgd, and the domain attention mechanism as shown in Figure 4, we convert a SS-TCN

into a domain adaptive TCN (DA-TCN), and stack multiple stages of DA-TCN to build the final architecture. Lld and Lgd is

the local and global domain loss, respectively. Ly is the prediction loss and Lae is the attentive entropy loss.

as domain attentive temporal pooling (DATP) and can be

expressed as:

h =
1

T

T∑

j=1

(wj + 1) · fj (7)

In addition, we add the minimum entropy regularization

to refine the classifier adaptation. However, we only want to

minimize the entropy for the videos that are similar across

domains. Therefore, we attend to the videos which have

low domain discrepancy, so that we can focus more on min-

imizing the entropy for these videos. The attentive entropy

loss Lae can be expressed as follows:

Lae =
1

T

T∑

j=1

(1 +H(d̂j)) ·H(ŷj) (8)

where d̂ and ŷ is the output of Gld and Gy , respectively. We

also adopt the residual connection for stability.

By adding Equation (8) into Equation (4), and replacing

Gtf (f) with h by Equation (7), the overall loss of our final

proposed Mixed Temporal Domain Adaptation (MTDA),

as shown in Figure 5, can be expressed as follows:

L =

Ns∑
Ly −

Ñs∑
(βlLld + βgLgd − µLae)

(9)

where µ is the weight for the attentive entropy loss.

4. Experiments

To evaluate how our approaches can diminish spatial-

temporal discrepancy for action segmentation, we choose

three challenging datasets: Georgia Tech Egocentric Ac-

tivities (GTEA) [8], 50Salads [35], and the Breakfast

dataset [14], which separate the training and testing sets

by different people (noted as subjects), resulting in high

spatio-temporal variations. By following the transductive

setting for DA, “Source” refers to the original training set,

and “Target” refers to the testing set without labels. With

these three datasets, we show how our approaches adapt

the same actions across different people by decreasing the

spatio-temporal variations across videos.
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4.1. Datasets

The GTEA dataset contains 28 videos including 7

kitchen activities performed by 4 subjects. All the videos

were recorded by a camera that is mounted on the actors

head. There are totally 11 action classes including back-

ground. On average, each video is around one minute long

with 20 action instances. We use 4-fold cross-validation for

evaluation by leaving one subject out.

The 50Salads dataset contains 50 videos for salad prepa-

ration activities performed by 25 subjects. There are totally

17 action classes. On average, each video contains 20 ac-

tion instances and is 6.4 minutes long. For evaluation, we

apply 5-fold cross-validation by leaving five subjects out.

The Breakfast dataset is the largest among the three

datasets with 1712 videos for breakfast preparation activ-

ities performed by 52 subjects. The videos were recorded

in 18 different kitchens with 48 action classes where each

video contains 6 action instances on average and is around

2.7 minutes long. For evaluation, we utilize the standard

4-fold cross-validation by leaving 13 subjects out.

4.2. Evaluation Metrics

For all the three datasets, we use the following evaluation

metrics as in [17]: frame-wise accuracy (Acc), segmental

edit score, and segmental F1 score at the IoU threshold k%,

denoted as F1@k (k = {10, 25, 50}).

While frame-wise accuracy is one of the most com-

mon evaluation metrics for action segmentation, it does not

take into account the temporal dependencies of the pre-

diction, causing large qualitative differences with similar

frame-wise accuracy. In addition, long action classes have

higher impact on this metric than shorter action classes,

making this metric not able to reflect over-segmentation er-

rors. To address the above limitations, the segmental edit

score penalizes over-segmentation by measuring the order-

ing of predicted action segments independent of slight tem-

poral shifts. Finally, another suitable metric segmental F1

score (F1@k) becomes popular recently since it is found

that the score numbers better indicate the qualitative seg-

mentation results. F1@k also penalizes over-segmentation

errors while ignoring minor temporal shifts between the

predictions and ground truth. F1@k is determined by the

total number of actions but not depends on the duration

of each action instance, which is similar to mean average

precision (mAP) with intersection-over-union (IoU) overlap

criteria.

4.3. Implementation

Our implementation is based on the PyTorch [30] frame-

work. We extract I3D [1] features for the video frames and

use these features as input to our model. The video frame

rates are the same as [7]. For fair comparison, we adopt

the same architecture design choices of MS-TCN [7] as our

GTEA F1@{10, 25, 50} Edit Acc

Source only (MS-TCN) 85.8 83.4 69.8 79.0 76.3

DA (L) 89.6 87.9 74.4 84.5 80.1

DA (L + G) 90.0 88.6 74.9 85.6 79.6

DA (L + G + A) 90.5 88.4 76.2 85.8 80.0

50Salads F1@{10, 25, 50} Edit Acc

Source only (MS-TCN) 76.3 74.0 64.5 67.9 80.7

DA (L) 79.2 77.8 70.3 72.0 82.8

DA (L + G) 80.2 78.4 70.6 73.4 82.2

DA (L + G + A) 82.0 80.1 72.5 75.2 83.2

Breakfast F1@{10, 25, 50} Edit Acc

Source only (MS-TCN) 52.6 48.1 37.9 61.7 66.3

DA (L) 72.8 67.8 55.1 71.7 70.3

DA (L + G) 72.6 66.9 54.3 72.6 69.2

DA (L + G + A) 74.2 68.6 56.5 73.6 71.0

Table 1: The experimental results for all our approaches on

GTEA, 50Salads, and the Breakfast dataset (L: local tempo-

ral DA, G: global temporal DA without domain attention, A:

domain attention mechanism).

baseline model. The whole model consists of four stages

where each stage contains ten dilated convolution layers.

We set the number of filters to 64 in all the layers of the

model and the filter size is 3. For optimization, we use the

Adam optimizer and the batch size equals to 1. Since the

target data size is smaller than the source data, each target

data is loaded randomly multiple times in each epoch during

training. For the weighting of loss functions, we follow the

common strategy as [10, 11] to gradually increase βl and βg

from 0 to 1. the weighting α for smoothness loss is 0.15 as

in [7] and µ is chosen as 1× 10−4 via the grid-search.

4.4. Experimental Results

We first compare with the baseline model MS-TCN [7]

to see how our approaches effectively utilize the unlabeled

videos for action segmentation. “Source only” means the

model is trained only with source labeled videos. And then

we compare the proposed approach to the state-of-the-art

methods on all three datasets.

Local Temporal Domain Adaptation. By integrating do-

main classifiers with frame-level features f, the results on all

three datasets with respect to all the metrics are improved

significantly, as shown in the row “DA (L)” in Table 1. For

example, on the GTEA dataset, our approach outperforms

the baseline by 4.6% for F1@50, 5.5% for the edit score

and 3.8% for the frame-wise accuracy. Although “DA (L)”

mainly works on the frame-level features, they are learned

using the context from neighbor frames, so they still con-

tain temporal information, which is critical to diminish the

temporal variations for actions across domains.

Mixed Temporal Domain Adaptation. Despite the im-

provement from local temporal DA, the temporal recep-
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tive fields of frame-level features are still not guaranteed

to cover the whole video length. Therefore, we aggre-

gate frame-level features to generate a video-level feature

for each video and apply additional domain classifier on it.

However, aggregating frames by temporal pooling without

considering the importance of each frame does not ensure

better performance, especially for the Breakfast dataset,

which contains much higher domain discrepancy than the

other two. The F1 score and frame-wise accuracy both have

slightly worse results, as shown in the row “DA (L + G)”

in Table 1. Therefore, we apply the domain attention mech-

anism to aggregate frames more effectively, leading to bet-

ter global temporal DA performance. For example, on the

Breakfast dataset, “DA (L + G + A)” outperforms “DA (L)”

by 1.4% for F1@50, 1.9% for the edit score and 0.7% for

the frame-wise accuracy, as shown in Table 1.

Our final method “DA (L + G + A)”, which is also

MTDA, outperforms the baseline by large margins (e.g.

6.4% for F1@50, 6.8% for the edit score and 3.7% for the

frame-wise accuracy on GTEA; 8.0% for F1@50, 7.3% for

the edit score and 2.5% for the frame-wise accuracy on

50Salads), as demonstrated in Table 1.

Comparison with the State-of-the-Art. Here we compare

the proposed MTDA to the state-of-the-art methods, and

MTDA outperforms all the previous methods on the three

datasets with respect to three evaluation metrics: F1 score,

edit distance, and frame-wise accuracy, as shown in Table 2.

For the GTEA dataset, the authors of MS-TCN [7] also

fine-tune the I3D features to improve the performance (e.g.

from 85.8% to 87.5% for F1@10). Our MTDA outperforms

the fine-tuned MS-TCN even without any fine-tuning pro-

cess since we learn the temporal features more effectively

from unlabeled videos, which is more important for action

segmentation.

cGAN [9] utilizes supplementary modalities including

depth maps and optical flow with an auxiliary network.

cGAN outperforms MS-TCN in terms of the F1 score and

edit score on the 50Salads dataset. Our MTDA outperforms

cGAN, indicating more effective way to utilizes auxiliary

data.

For the Breakfast dataset, the authors of MS-TCN [7]

also use the improved dense trajectories (IDT) features,

which encode only motion information and outperform the

I3D features since the encoded spatial information is not the

critical factor for the Breakfast dataset. Our MTDA outper-

forms the IDT-version of MS-TCN by a large margin with

the same I3D features. This shows that our DATP mod-

ule effectively aggregate frames by considering the tempo-

ral structure for action segmentation.

4.5. Ablation Study and Analysis

Integration of Gld and Stages. Since we use Multi-stage

TCN [7] as our baseline model and develop our approaches

GTEA F1@{10, 25, 50} Edit Acc

ST-CNN [18] 58.7 54.4 41.9 49.1 60.6

Bi-LSTM [34] 66.5 59.0 43.6 - 55.5

ED-TCN [17] 72.2 69.3 56.0 - 64.0

TricorNet [4] 76.0 71.1 59.2 - 64.8

TDRN [19] 79.2 74.4 62.7 74.1 70.1

cGAN [9] 80.1 77.9 69.1 78.1 78.5

MS-TCN [7] 85.8 83.4 69.8 79.0 76.3

MS-TCN (FT) [7] 87.5 85.4 74.6 81.4 79.2

MTDA 90.5 88.4 76.2 85.8 80.0

50Salads F1@{10, 25, 50} Edit Acc

IDT+LM [31] 44.4 38.9 27.8 45.8 48.7

Bi-LSTM [34] 62.6 58.3 47.0 55.6 55.7

ST-CNN [18] 55.9 49.6 37.1 45.9 59.4

ED-TCN [17] 68.0 63.9 52.6 59.8 64.7

TricorNet [4] 70.1 67.2 56.6 62.8 67.5

TDRN [19] 72.9 68.5 57.2 66.0 68.1

MS-TCN [7] 76.3 74.0 64.5 67.9 80.7

cGAN [9] 80.1 78.7 71.1 76.9 74.5

MTDA 82.0 80.1 72.5 75.2 83.2

Breakfast F1@{10, 25, 50} Edit Acc

ED-TCN [17] - - - - 43.3

HTK [16] - - - - 50.7

TCFPN [5] - - - - 52.0

HTK (64) [15] - - - - 56.3

GRU [32] - - - - 60.6

MS-TCN [7] 52.6 48.1 37.9 61.7 66.3

MS-TCN (IDT) [7] 58.2 52.9 40.8 61.4 65.1

MTDA 74.2 68.6 56.5 73.6 71.0

Table 2: Comparison with the state-of-the-art on GTEA,

50Salads, and the Breakfast dataset.

F1@{10, 25, 50} Edit Acc

Source only 85.8 83.4 69.8 79.0 76.3

{S1} 88.6 86.2 73.6 84.2 78.7

{S2} 89.1 87.2 74.4 84.3 79.1

{S3} 89.2 87.3 72.3 83.8 78.9

{S4} 88.1 86.4 73.0 83.0 78.8

{S1, S2} 89.0 85.8 73.5 84.8 79.5

{S2, S3} 89.6 87.9 74.4 84.5 80.1

{S3, S4} 88.3 86.8 73.9 83.6 78.6

Table 3: The experimental results for the integration of Gld

and different stages of MS-TCN [7] on the GTEA dataset.

{Sn} means adding Gld to the nth stage. The stages with

smaller n are closer to inputs.

upon it, it raises a question: How to effectively perform

DA by integrating the domain classifiers to a multi-stage

architecture? Our architecture contains four stages as in

[7]. First, we integrate Gld into one stage and the results

are demonstrated in Table 3. The results show that the best

performance happens when Glds are integrated into middle

stages, such as S2 or S3. S1 is not a good choice for DA
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stir

Ground Truth

Source Only

DA (L)

DA (L + G)

DA (L + G + A)

takebackground open pour close putscoop

Figure 6: The qualitative results of temporal action segmentation on GTEA for the activity CofHoney. The video snapshots

are shown in the first row in a temporal order (from left to right). “Source only” refers to the baseline model MS-TCN [7].

because of two reasons: 1) S1 corresponds to low-level and

transferable features with less discriminability where DA

shows limited effects [22]. 2) S1 capture less temporal in-

formation from neighbor frames, representing less temporal

receptive fields, which is critical for action segmentation.

However, higher stages (e.g. S4) are not always better. We

conjecture that it is because higher stages are used to refine

the prediction. They may affect the semantic structure of

feature representations, which is important to DA. In our

case, integrating Gld into S2 provides the best overall per-

formance.

We also add multiple domain classifiers to adjacent

stages. However, multi-stage DA does not always guarantee

improved performance. For example, {S1, S2} has worse

results than {S2} in terms of F1@{10, 25, 50}. Since {S2}
and {S3} provide the best single-stage DA performance, we

use {S2, S3}, which performs the best, as the final model

for all our approaches in all the experiments.

Qualitative results. In addition to evaluating the quanti-

tative performance using the above metrics, it is also com-

mon to evaluate the qualitative performance to ensure that

the prediction results are aligned with human vision. Here

we compare our approaches with the baseline model MS-

TCN [7] and the ground truth, as shown in Figure 6. MS-

TCN fails to predict open before the long pour action in

the middle part of the video, and falsely predict pour before

stir in the end of the video, as shown in the “Source only”

row. With local and global temporal DA, our approach can

detect all the actions happened in the video, as shown in

the row “DA (L + G)”. Finally, with the domain attention

mechanism, our proposed MTDA also removes the falsely

predicted action pour. For more qualitative results, please

refer to the supplementary material.

5. Conclusion and Future Work

In this paper, we consider action segmentation as a DA

problem and reduce the domain discrepancy by perform-

ing unsupervised DA with auxiliary unlabeled videos. To

diminish domain discrepancy for both the spatial and tem-

poral directions, we propose Mixed Temporal Domain

Adaptation (MTDA) to jointly align frame- and video-

level embedded feature spaces across domains, and fur-

ther integrate with the domain attention mechanism to fo-

cus on aligning the frame-level features with higher domain

discrepancy, leading to more effective domain adaptation.

The comprehensive experiment results validate that our ap-

proach outperforms all the previous state-of-the-art meth-

ods. Our approach can adapt models effectively by using

auxiliary unlabeled videos, leading to further possible ap-

plications to large-scale problems, such as video surveil-

lance and human activity analysis. For the future work, we

would like to develop DA approaches with self-supervised

learning to reduce the need of additional unlabeled videos.
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S. Saminger-Platz. Central moment discrepancy (cmd) for

domain-invariant representation learning. In International

Conference on Learning Representations (ICLR), 2017. 2

[46] W. Zhang, W. Ouyang, W. Li, and D. Xu. Collaborative and

adversarial network for unsupervised domain adaptation. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2018. 2

614


