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Abstract

The gradient-weighted class activation mapping (Grad-

CAM) method can faithfully highlight important regions in

images for deep model prediction in image classification,

image captioning and many other tasks. It uses the gradi-

ents in back-propagation as weights (grad-weights) to ex-

plain network decisions. However, applying Grad-CAM to

embedding networks raises significant challenges because

embedding networks are trained by millions of dynamically

paired examples (e.g. triplets). To overcome these chal-

lenges, we propose an adaptation of the Grad-CAM method

for embedding networks. First, we aggregate grad-weights

from multiple training examples to improve the stability of

Grad-CAM. Then, we develop an efficient weight-transfer

method to explain decisions for any image without back-

propagation. We extensively validate the method on the

standard CUB200 dataset in which our method produces

more accurate visual attention than the original Grad-CAM

method. We also apply the method to a house price estima-

tion application using images. The method produces con-

vincing qualitative results, showcasing the practicality of

our approach.

1. Introduction

Deep neural networks have achieved superior perfor-

mance in many visual tasks, such as object classification,

detection and visual feature embedding. An intuitive and

understandable explanation is of great importance for deep

neural networks in real applications. For example, a com-

pany builds a house price estimation system based on house

attributes (e.g. location and bedroom number) and visual

features from satellite images. It is desirable for the sys-

tem having the capability of explaining the prediction to

clients. For example, a heatmap shows that the “roads”

add/decrease values for the house. These applications mo-

tivate our work.

1The majority of work was performed when Lei Chen was an intern at

Borealis AI.

Figure 1. Visual explanation for embedding networks. For an em-

bedding network (e.g. the CNN branch from a triplet network),

our method produces Grad-CAM style visual explanation for any

given image. Best viewed in color.

Interpretability is a widely recognized but unsolved

problem for deep models, and many methods have been pro-

posed [36, 8, 27, 12, 19, 37, 7, 20] from different perspec-

tives. However, most of them are designed for classification

tasks or the network has classification branches [17]. Very

few approaches are designed for embedding networks. For

example, Zheng et al. [38] developed a consistent attentive

siamese network for person re-identification and used the

Grad-CAM heatmap for visualization. However, their net-

work requires an extra classification branch, which is not

applicable to general embedding networks. Stylianou et al.

[28] proposed a method to successfully visualize the im-

age regions responsible for pairwise similarity in embed-

ding networks. However, their method focuses on pairwise

similarity and requires two images in testing. Our method

is significantly different from their method and requires a

single image in testing.

Technically, our method extends the Grad-CAM method

[27] to explain embedding networks. Grad-CAM uses gra-

dients as weights (grad-weights) to highlight important re-

gions in images. It has been extended to using high-order

gradients [6] and multi-layer gradients [33]. It also was

recommended as the most suitable method for explaining

graph convolutional neural networks [22]. However, grad-

weights are not directly available in testing for embedding

networks, thus directly applying Grad-CAM to embedding

networks ends with either intractable gradients or inaccu-

rate visual attention.

To overcome these challenges, we develop an adapta-
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tion of Grad-CAM to visualize embedding features. Our

method is inspired by non-parametric methods such as SIFT

flow [16] for depth estimation and Collageparsing [29] for

semantic scenes parsing. These non-parametric methods

search the nearest neighbor in a database to find the opti-

mal hidden states (e.g. scene depth or semantic labels) of

images. Similarly, we treat the grad-weights as the hidden

states of an image (when the network weights are fixed) and

search them in a database. This strategy is particularly suit-

able for embedding networks as they naturally provide em-

beddings (features) for the search.

Figure 1 illustrates the testing phase of our work. Given

an embedding network, our work produces Grad-CAM

style visual attention of an input image. In training, our

method adapts Grad-CAM to embedding networks for accu-

rate visualization and build a feature/grad-weights database.

In testing, our method queries the grad-weights in the

database to visualize any image only using forward prop-

agation. In summary, our work has three contributions:

• We adapt Grad-CAM to visualize embedding network

features. Our method is more accurate than the origi-

nal Grad-CAM method for visualizing embedding net-

works.

• We develop a weight-transfer method to visualize any

image without backpropagation in testing.

• We conduct extensive experiments on a public dataset

by providing detailed analyses of different technique

choices. The experimental results show that our

method is effective in terms of accuracy, computation

cost and storage. We also apply our method to a house

price estimation application and generate convincing

qualitative results.

2. Related work

Visual feature embedding: Visual feature embedding

is the task of learning feature vectors from images usually

using deep CNNs [30]. Researchers have explored many

directions on this area, including loss functions [25, 10, 32]

for pair/triplet images, sampling methods for training ex-

amples [21, 34, 39, 35], compactness representation [9] and

learning strategies [24]. In this work, the embedding net-

work can be trained from any existing techniques. We fix

the network weights for visualization.

Interpretable deep models: Interpretable neural net-

works aim to explain the decision of networks. For ex-

ample, class activation map (CAM) [40] and grad-CAM

[27] were developed to localize visual evidences in images.

These methods produce a heatmap on top of the input im-

age, showing the critical area that supports the decision.

Our method falls into this category.

Many approaches were developed from different aspects

[1, 38, 22]. Most of them either have specific learning pro-

cess [37] or require extra labeled data [3, 41]. For example,

Zhang et al. [37] proposed interpretable CNNs that learn in-

terpretable filters for specific object parts without labeling

the object parts. Bau et al. [3] proposed network dissection

to quantitatively measure the interpretability of neural net-

work representations via aligning individual hidden units to

a set of pre-defined semantic concepts using densely anno-

tated datasets. Recently, Chen et al. [7] proposed a knowl-

edge distillation based method that uses separately-trained

explainable models to provide a quantitative explanation for

CNN predictions. On the contrary, our method does not re-

quire extra training process or extra data annotation.

House price estimation using visual features: Images

were used to improve the house price estimation perfor-

mance. For example, Bency et al. [4] developed a method

to estimate the property value using satellite images and

point of interest data (e.g. restaurant number near the prop-

erty). Poursaeed et al. [23] evaluated the impact of visual

features of a house on its market value using predicted lux-

ury level from interior and exterior photos. Law et al. [14]

used both street-view images and satellite images for house

price prediction. These works show that visual features im-

prove prediction accuracy. Our work moves one step further

and explores the visual attention in images for house price

estimation.

3. Method

We propose a visual explanation method based on Grad-

CAM [27]. The input of our method is a pre-trained net-

work and an image. The output is a grad-CAM style visual

attention map (heatmap). Figure 2 shows an overview of the

method. Our method first adapts the grad-CAM method to

build an embedding/grad-weights database from the train-

ing set. Then, our method queries the grad-weights from

the database to highlight important regions in any image

without backpropagation.

We first introduce preliminary work on embedding net-

works and Grad-CAM. Then, we describe our adaptation of

Grad-CAM in detail.

3.1. Preliminaries

Embedding networks: Visual embedding networks

map images to an embedding (feature) space so that the sim-

ilarity between images is kept in the feature space. We use

the triplet network [25, 34, 10] as an example to briefly in-

troduce embedding networks. The triplet network has three

shared-weights branches (e.g. CNNs) and takes a triplet of

an anchor, a positive, and a negative image as input. The

loss is formulated as:

Ltri(a, p, n) = [D(fa, fp)−D(fa, fn) + δ]+, (1)
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Figure 2. Method overview. The input is a pre-trained embedding network (e.g. triplet network). The output is the Grad-CAM style visual

attention map. Our method first samples triplets from the training set and adapts the Grad-CAM method to estimate grad-weights for feature

maps. After that, the method stores embedding/grad-weights in a database for the training set. In testing, the method queries grad-weights

from the database using the embedding, correctly highlighting important regions for network decision without backpropagation.

where f indicates an embedding vector, D(·) means the

squared Euclidean distance, δ is a margin, and [·]+ denotes

the hinge function. Note that the embedding vectors are L2

normalized.

In training, millions of triplets are dynamically sampled

to minimize the loss. In testing, the branch network outputs

the feature from an input image. In our work, the network

is pre-trained, and its weights are fixed for visualization.

Grad-CAM: Grad-CAM [27] uses the gradient informa-

tion flowing into the last convolutional layer of the CNN to

understand the importance of each neuron for making de-

cisions (e.g. predict a “dog” image). In order to obtain the

class discriminative localization map for a particular class

c, the method first computes the gradient of the score yc

(before softmax) with respect to the feature maps Ak:

gc(A
k) =

∂yc

∂Ak
, (2)

in which k is the channel index. Then, it averages the gra-

dients as the neural importance weight αc
k in each channel:

αc
k =

1

Z

∑

i

∑

j

∂yc

∂Ak
i,j

, (3)

in which (i, j) is the spatial index and Z is the spatial res-

olution of the feature map. We call this weight as a grad-

weight. Finally, Grad-CAM is a weighted sum of feature

maps, followed by a ReLU operator:

Hc
Grad−CAM = ReLU(

∑

k

αc
kA

k). (4)

As a result, Grad-CAM is a class specific heatmap of the

same size of the feature maps.

3.2. Adapting Grad­CAM for embedding networks

In (4), there are two parts: grad-weights αc
k and feature

maps Ak. For a given network, we can get the feature maps

using forward propagation. On the other hand, the grad-

weights require a per-class score yc and a backward propa-

gation process. Theoretically, yc can be any differentiable

activation [27]. In practice, yc is mostly from classification-

based activations. For example, when Grad-CAM is applied

to image captioning, the log probability of a predicted word

(i.e. a 1000-way classification) is used as yc to compute the

grad-weights.

Directly applying grad-CAM to embedding networks

has two main challenges. First, embedding networks do

not provide per-class scores in training/testing. Second, it

is almost impossible to compute gradients for a single im-

age in testing because the testing image has neither labels

nor paired images. Even if we make “fake” triplets by using

multiple training/testing images, how to create valid triplets

is not clear because of no labels.

To overcome the first challenge, we propose to use the

triplet loss (1) as the differentiable activation to generate
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Figure 3. Visual attention on CUB training set. (a) Original im-

age; (b) Grad-CAM from a single triplet; (c) Grad-CAM from 50

triplets using all feature channels; (d) Grad-CAM from 50 triplets

using top-50 channels (ours). Best viewed in color.

grad-weights. The triplet loss has similarity information of

anchor/positive and anchor/negative pairs. Specifically, we

sample multiple valid triplets (i.e. non-zero loss) form one

anchor image to compute visual attention in the anchor im-

age.

Formally, we modify the per-class gradient to:

g(Ak) =
∂Ltri

∂Ak
. (5)

Here, we replace the class score with triplet loss in (2). By

doing so, we can compute the grad-weights for an anchor

image:

αk =
1

Z

∑

i

∑

j

Ltri

∂Ak
i,j

. (6)

For the choice of differentiable activation, we have also

explored some alternatives, including distance difference

(D(fa, fp)−D(fa, fn)) and pair-wise distance (D(fa, fp)
or D(fa, fn)). In our exploratory experiments, we observed

that using the distance difference is more accurate than us-

ing the pair-wise distance but it is significantly less accurate

than using the triplet loss.

Because the embedding network is trained from lots of

triplets, the loss from one triplet usually can not represent

all these triplets. We propose to sample multiple triplets

and average the grad-weights αk = 1

Ns

∑
s

αs
k, in which Ns

is the number of sampled triplets. By averaging the grad-

weights, we expect the visual attention is more accurate

than using one triplet. This expectation agrees with the con-

sistent attention model [38] which encourages visual atten-

Figure 4. Grad-weights transfer example. Top row: a training im-

age and its visualization; Bottom row: a testing image and its vi-

sualization. The training and testing images are nearest neighbors

in the embedding space. Best viewed in color.

tion of an image to be consistent in different pairs. Figure 3

(b) and (c) show an example of Grad-CAM using one triplet

and 50 triplets, respectively. Grad-CAM from 50 triplets (c)

produces more accurate results than (b).

Grad-weights from multiple triplets provide more accu-

rate visual attention than those from one triplet. However,

we observed that it does not always give convincing results.

We experimentally found that using top-weights works bet-

ter than using weights in all channels. We first sort the

weights of each channel. Then, we only use the M channels

with the highest weight values (top-M weights). Figure 3

(d) shows the visual attention using top-50 weights chan-

nels.

Our method of using top-M weights channels shares

similar ideas with a concurrent work named sharpen focus

by Wang et al. [33]. Sharpen focus highlights the pixels

where the gradients are positive by setting the negative gra-

dients as zeros. Our method highlights channels that have

higher mean gradient values. Sharpen focus and our method

diminish the impact of negative gradients in pixel-wise and

channel-wise, respectively. Our method requires less stor-

age and computation cost as our method uses fewer (about

40 times) channels. We apply the top-weights method to

all training images. Then, we build an embedding/grad-

weights database that is used for testing images.

Variants of Grad-CAM: In the above, we use Grad-

CAM as the basic method to compute the grad-weights.

Our method is very flexible that the basic method can be

replaced by more advanced variants of Grad-CAM such as

Grad-CAM++ [6]. Grad-CAM++ uses the second deriva-

tive of the gradients to compute the channel-wise weights
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and produces more accurate results than Grad-CAM in im-

age classification. We will provide a detailed comparison of

these two basic methods in the experiment section.

3.3. Weight­transfer for testing images

In testing, we transfer the grad-weights from training im-

ages to testing images using the nearest neighbor search.

Our method is intuitive and effective. When two exam-

ples (one is training and another is testing) are close in

the embedding space, they usually have similar semantic

attributes. For example, two birds have red colors on the

heads (see Figure 4). If the attributes (i.e. red head pixels)

are activated by convolutional kernels in the training exam-

ple. These convolutional kernels should also be activated by

the same attributes in the testing image. As a result, the test-

ing image can use the grad-weights of its nearest neighbor

in the training set.

Based on this analysis, we transfer the grad-weights from

the training set to testing images using the nearest neighbor

search. We first obtain the embedding for the testing image.

Then, we query the nearest neighbor training image in the

embedding space. Then, we use grad-weights of the nearest

neighbor to visualize the testing image. In this way, we can

visualize the testing image without backpropagation. The

computation cost for the nearest neighbor search is negli-

gible when the dataset size is small (e.g. CUB200). Fig-

ure 4 shows a grad-weights transfer example on CUB200.

In this example, the transferred grad-weights successfully

highlight the pixels (head, neck and upper body) that are

important to tell the difference between this bird and other

species. We found that this weight-transfer method works

very well in practice and will show more results in the next

section.

4. Experiments

4.1. Benchmark experiments

Dataset: The CUB200-2011 dataset [31] is a standard

benchmark for visual feature embedding [34], fine-grained

classification [2] and network explanation [37]. It contains

11.8K bird images of 200 species in which the first 100

species are for training and the rest species are for test-

ing. Each image has a bounding box and a segmentation

mask of the bird location. We trained a resnet-50 embed-

ding network with feature dimension 128 by following the

work of Wu et al. [34]. We use the last feature block output

in resnet-50 as the activation map (2048 × 7 × 7). Please

note the bounding box and segmentation annotations are

only used in evaluation (not used in training).

Metrics: We use the mean ratio of the Grad-CAM acti-

vation inside the bounding box or segmentation mask as the

visual attention accuracy metric. This metric was proposed

by [26] to evaluate visual explanation for network decisions.

The higher score means more neural activation is at the ob-

ject (bird) or its close surroundings, indicating better visual

attention. We denote these two metrics as bounding box

score and mask score, respectively.

In the experiment, our method has two variants: (1)

use Grad-CAM [27] the basic method; (2) use Grad-

CAM++ [6] as the basic method to compute the channel-

wise weights. Both of them use multiple triplets (Ns = 50)

and top-50 channels. We denote our method as top-50.

We compare our method with the following baselines on

the CUB200 testing set:

Baseline 1: In this baseline, the heatmap has a uniform

distribution, meaning each pixel weights equally. This base-

line gives an approximate lower bound of the score. We

denote this method by uniform.

Baseline 2: This baseline applies the Grad-CAM/Grad-

CAM++ methods to embedding networks as described in

Section 3.2. It uses grad-weights (all channels) from one

triplet. We denote this baseline as single triplet.

Baseline 3: This baseline also applies the Grad-

CAM/Gad-CAM++ methods to embedding networks. It

uses multiple triplets (50) and all channels (2048). We de-

note this baseline as all channels.

Main results: Table 1 shows the visual attention accu-

racy score on the CUB200 testing set. First, all other meth-

ods are significantly better than the uniform baseline. It

means Grad-CAM style visual attention works as expected

in embedding networks. Second, when Grad-CAM is used

as the basic method, our method (top-50) achieves the high-

est score with large margins with the second-best (0.760 vs.

0.643 for the bounding box score and 0.534 vs. 0.416 for

the mask score). It means the top-weights method improves

visualization accuracy. Third, Grad-CAM++ based meth-

ods achieve higher scores than Grad-CAM based counter-

parts. Top-50 is slightly better than baseline 2 and baseline

3. It indicates that Grad-CAM++ can eliminate the neg-

ative impact of negative gradients. Our method (top-50)

is still preferable as it uses fewer channels than these two

baselines. Overall, our proposed strategies (e.g. multiple

triplets and top-weight channels) improve both Grad-CAM

and Grad-CAM++ based methods on accuracy. Figure 5

shows qualitative results of two examples from different

methods. Our method (column e and h) produces convinc-

ing visual attention. More results are in the supplementary

material.

In the experiment, we found Grad-CAM is much faster

(around 5-10 times) than Grad-CAM++, so we choose

Grad-CAM as the default basic method. All the follow-

ing results are based on Grad-CAM (50 triplets and top-50

channels) if they are not explicitly stated.

We report weakly supervised localization accuracy as

previous work [40, 42]. The accuracy is measured by

IoU (intersection over union) values between the ground
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Visual attention accuracy

Metric
Uniform

Grad-CAM based Grad-CAM++ based

ST All channels Top-50 ST All channels Top-50

BBox 0.543 0.615 ±0.278 0.643 ± 0.265 0.760 ± 0.152 0.772 ± 0.145 0.767 ± 0.142 0.776 ± 0.142

Mask 0.275 0.380 ± 0.234 0.416 ± 0.231 0.534 ± 0.146 0.543 ± 0.140 0.538 ± 0.130 0.549 ± 0.141

Table 1. Visual attention accuracy (CUB200 testing set). The highest score is highlighted by bold. Standard deviation is reported to measure

the variation of the score. BBox and Mask are short for bounding box score and mask score. ST is short for single triplet.

Figure 5. Qualitative results on CUB200. (a) Input image and bounding box; (b) Segmentation mask; (c-e) Grad-CAM based methods

(single triplet, multi-triplets with all channels and multi-triplets with top-50 channels); (f-h) Grad-CAM++ based methods (single triplet,

multi-triplets with all channels and multi-triplets with top-50 channels). The two numbers under each visual attention map are bounding

box score and mask score, respectively. Please note the bounding box and segmentation mask are only used for evaluation (not used in

training). Best viewed in color.

Figure 6. Qualitative results on MS COCO.

truth bounding box and a bounding box generated from

the heatmap on the full-size image (no image scale/crop).

To generate a bounding box from the heatmap, we first

use a threshold to binarize the heatmap. Then, we take

the bounding box that covers the largest connected com-

ponent in the binary image. We set a number of thresholds

and our method achieves the accuracy of 79.7% when the

threshold is 0.2, which is much higher (79.7% vs. 50.6%)

than a recent work [42]. Moreover, the accuracy is quite

stable (above 75%) when the threshold is in the range of

[0.15, 0.25] (see supplementary material).

We also test our method on the MS COCO dataset [15]

in which each image has multiple objects. Our model is

trained on the CUB200 training set. We want to see if our

method can correctly highlight birds regions in MS COCO

images. Figure 6 shows four qualitative results. Our method

correctly highlights birds regions in most cases but it also

makes mistakes. For example, the dog is highlighted in

the bottom-right image. We found that MS COCO is much

more challenging for our method because the testing data is

very different from the training data.

Storage analysis: Our method stores a feature/grad-

weights database. The size of the database is O(N(D+M))
in which N is the number of examples, D is the feature di-

mension and M is the number of channels. Ideally, we want

N and M as small as possible.

We analyze the sensitivity of the M in top-M channels

on accuracy. Figure 7 (a) shows the bounding box score

with different values of M . First, the score is very stable

when M is in the range of [32, 1024]. It means our method

is not sensitive to the choice of the number of channels. Be-

cause smaller M saves storage and computation cost, we

experimentally set the channel number as 50. Second, it is

quite unexpected that using the top-1 channel has a higher

score (0.68 vs. 0.64) than using all channels. One expla-

nation is that the top-1 channel keeps the most important

information for specific bird species. We further analyze

the distribution of channel numbers in top-1 grad-weights

on CUB200 testing set (see Figure 7 (b)). The distribution

is quite uniform over all channels and has obvious peaks.

The peaks may relate to particular bird super-classes.

We also analyze the influence of the number of N by

clustering training examples. First, we use the k-means

clustering method [18] to group training examples in the

embedding space. Then, we build a database using k-means
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Figure 7. (a) Sensitivity of M in top-M channels. The error bar is standard deviation. The last bar uses all channels (2048). (b) Top-1

grad-weights channel distribution (CUB200 testing set).

centers and averaged grad-weights in each cluster. As a re-

sult, we decrease the number N to the number of cluster

centers. During testing, a testing example queries near-

est neighbors from the cluster centers. We found that our

method achieves similar performance (0.750 vs. 0.760) by

using a small number (50) of cluster centers, which saves

about 120 times disk space. This result indicates the stor-

age is not a bottleneck of our method.

4.2. Application: house price estimation

Here, we show the application of our method on house

price estimation. In this task, the main model regresses

house prices from house attributes and visual features. As a

computer vision application, we are particularly interested

in explaining the prediction results by visualizing visual at-

tention on images.

Dataset and metric: We collect about 54,000 houses

(i.e. house, town-house and semi-detached) examples that

are located at the Greater Toronto Area (about 7,000 km2)

in Canada. Each example has attributes of geo-location (i.e.

longitude and latitude), bedrooms number, bathrooms num-

ber, sold time (year and month), and unit area. Each exam-

ple has a sold price (from January 2017 to April 2019) as a

label. For each example, we collect the corresponding satel-

lite image from Google Map API 1. The map API provides

multiple-scale images that are centered at a geo-location.

We experimentally set the zoom level as 18 so that the im-

age provides a considerable resolution of a single house and

its neighborhood. Figure 8 (bottom) shows four examples

of satellite images and house prices. We sort the examples

by sold time and split the training/testing by the ratio of 6:4.

We name this dataset as GTA-sold. GTA-sold is challenging

in terms of huge geographic coverage, fewer attributes and

noisy inputs (some attributes are not accurate or missing).

To evaluate the prediction accuracy, we use 10% max-

1https://cloud.google.com/maps-platform/terms/

Figure 8. GTA-sold dataset. Top: training example locations; Bot-

tom: satellite image and house price examples. The house is

roughly at the image center. The price is in the unit of million

of Canada dollars.

imum error accuracy as the performance metric. By this

metric, the prediction is considered as correct if the pre-

dicted price is within the ±10% of the ground truth price.

Because GTA-sold has no bounding box annotation of the

objects in images, we only provide qualitative results for

visualization evaluation.

Network structure for visual feature extraction: We

use a rank siamese network [5] to learn features from paired

examples. For paired examples {xi, yi} and {xj , yj}, we

trained the network to predict if yi > yj . First, we use

the branch CNN to extract features f(xi) and f(xj) from

paired images. Then, we compute an element-wise differ-

ence vector vij = f(xi)⊖f(xj) and pass it to an FC (4×2)

layer before the cross-entropy loss. In training, we use a
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Accuracy

Attributes w/o VF (%) w VF (%) ∆ (%)

No – 36.1

G 37.8 39.9 2.1

G, Bed, Bath 47.1 50.1 3.0

G, Bed, Bath, T 42.6 50.6 8.0

G, A 48.3 48.7 0.4

G, Bed, Bath, T, A 50.7 55.2 4.5

Table 2. House price estimation accuracy without and with visual

features (VF). The best performance is highlighted by bold. G,

Bed, Bath, T, and A are short for geo-location, bedroom number,

bathroom number, sold time and unit area, respectively. The ∆

column shows the improved accuracy by using visual features.

resnet-50 (pre-trained on ImageNet) as the CNN branch and

fine-tune its FC (2048× 4) layer. The visual feature dimen-

sion is 4. In testing, the visual features are used in the re-

gression model as extra attributes. Besides the rank siamese

network, we explored many other feature extraction meth-

ods such as directly regressing the price [14] or using a log-

ratio loss [10] in a triplet network. We found that the rank

siamese network gives the highest prediction accuracy.

Price prediction and visualization: In price prediction,

we conducted experiments using different combinations of

house attributes with visual features. For different combi-

nations, we train different regression models, including ran-

dom forests (RF), gradient boosting regression, support vec-

tor regression (SVR) and neural network regression. Gradi-

ent boosting regression gives the highest prediction accu-

racy most of the time so that we use it as the final model.

We apply our method (Section 3) to siamese network vi-

sualization. We first back-propagate the cross-entropy loss

to obtain the grad-weights. Then, we build a feature/grad-

weights database to visualize any images. As the same as

in CUB200, we use top-50 grad-weights that are averaged

from 50 siamese examples.

Table 2 shows the prediction accuracy on the testing set.

First, visual features consistently improve the prediction ac-

curacy in different feature combinations. When all the other

attributes are used, the improvement by visual feature is

significant (4.5%). Second, the best prediction accuracy is

55.2% by using all attributes and learned visual features.

The result is encouraging, considering we only have a few

attributes of the house.

We overlay the visual attention on satellite images. Fig-

ure 9 shows four qualitative results on testing set. In these

examples, visual attention is mostly at houses. It means

the network usually looks at the main objects. The network

also looks at roads (see the second row), which indicates

transportation feasibility also affects house prices. By ob-

serving many visualization results, we found that attention

patterns are more diverse than those on CUB200. This phe-

nomenon is expected as satellite images have more objects

Figure 9. Qualitative results on the GTA-sold dataset. Left: from

training set; right: from testing set. In each row, the grad-weights

of the testing image are transferred from the training image. Best

viewed in color.

(e.g. house, road, tree and swimming pool) than CUB200

images so that the visual attention should be more complex

and less easy to explain/understand. Overall, the visual-

ization results provide useful information about visual fea-

tures.

5. Discussion

We have presented a Grad-CAM adaptation method for

embedding networks. The method does not require back-

propagation in testing, and yet produces more accurate and

convincing heatmaps than the original Grad-CAM method.

Despite good performance on the benchmark evaluation,

our method is by no means to solve the general problem

of embedding network explanation. First, we only eval-

uate the method on CUB200 because other datasets (e.g.

Stanford Online Products [21] and Stanford Cars [13]) do

not have bounding box/segmentation annotations. To miti-

gate this limitation, we conducted extensive experiments on

CUB200 to evaluate our method, providing insightful anal-

ysis. Second, we found that Grad-CAM++ produces more

accurate visual attention than Grad-CAM in our method.

We do not further explore Grad-CAM++ for embedding

networks in this work, which could be a future direction.

Third, we focus on how to visualize embedding networks

and do not further explore other areas such as network struc-

tures. We choose resnet-50 as our network structure as it

is mostly used in the embedding networks and is used in

our real application. Validating/generalizing our conclu-

sion to other networks should be straightforward. Forth,

the qualitative results for the house price estimation are in-

formative but not very conclusive. One explanation is that

images from real applications are more difficult to under-

stand/explain than benchmark images (e.g. CUB200 im-

ages). Combining our method with scene decomposition

(e.g. [41]) could be a potential solution.

In the future, we would like to explain embedding net-

works semantically and quantitatively [7] and to explore

ways to improve the embedding network performance us-

ing visual attention [38, 33, 11].
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